Принцип неопределенности
В классической механике всякая частица движется по определенной траектории, так, что в любой момент времени точно фиксирована ее координата и импульс. Микрочастицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движении микрочастицы по определенной траектории, т.е. об одновременном задании ее координаты и импульса, значения которых определяют траекторию. Движение по определенной траектории несовместимо с волновыми свойствами, что становится совершенно очевидным, если проанализировать существо опытов по дифракции.
Степень точности, с которой к частице может быть применено представление об определенном положении ее в пространстве, дается соотношением неопределенностей, установленным немецким физиком В. Гейзенбергом. Согласно этому соотношению частица не может иметь одновременно вполне точные значения координаты xи соответствующего этой координате импульсаp, причем неопределенности в значениях этих величин удовлетворяют условию:
x·p h.
Микрочастица с определенным импульсом имеет полностью неопределенную координату. И наоборот, если микрочастица находится в состоянии с точным значением координаты, то ее импульс является полностью неопределенным. Чем точнее определена одна из величин xилиp , тем больше становится неопределенность другой.
Соотношение неопределенностей, отражая специфику микрочастиц, позволяет оценить, в какой времени можно применять понятия классической механики к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц.
Невозможность одновременно точно определить координату, и соответствующую ей составляющую импульса, не связана с несовершенством методов измерения или измерительных приборов. Это следствие специфики микрообъектов, отражающей особенности их объективных свойств, их двойственной корпускулярно-волновой природы.
Соотношение неопределенностей неоднократно являлось предметом философских дискуссий, приводивших некоторых философов к его идеалистическому истолкованию. Невозможность одновременного определения координаты и импульса использовалась для установления границ познаваемости мира. На самом деле соотношение неопределенностей не ставит какого-либо предела познанию микромира, а только указывает, насколько применимы к нему понятия классической механики.
Так, В. Гейзенберг выдвинул принцип “неконтролируемого взаимодействия” частицы с прибором. Неопределенность в значении импульса и координаты, якобы, обусловлена тем, что взаимодействие частицы и прибора может быть
познано лишь до некоторого предела, за которым принципиально невозможно познать объективные процессы микромира. Борьбу против индетерминизма в квантовой физике, против отрицания объективных причинных, закономерных связей в микромире вели П. Ланжевен, М. Лауэ, Л. де Бройль, М. Планк, А. Эйнштейн, советские физики С.И. Вавилов, В.А. Фок, Д.И. Блохинцев и другие. Они показывают, что соотношение неопределенностей свидетельствует лишь об ограниченной возможности применения понятий классической механики при описании “расплывшихся”, одновременно дискретных и волновых объектов, какими являются электроны и другие микрочастицы. Как видим, следует различать собственные положения квантовой физики и естествознания вообще (в данном случае соотношение неопределенностей) и их философско-мировоззренческие трактовки, которые могут сильно отличаться друг от друга. И только в результате тщательного анализа можно установить, какая из этих трактовок в наибольшей мере соответствует самому естествознанию, самой объективной природе.
- Оглавление
- Естествознание в системе науки и культуры
- Принципы, формы и методы научного познания
- Общие принципы научного познания
- Формы научного познания
- Методы научного исследования
- Особая роль математики в естествознании
- Естествознание и научная картина мира
- Понятие научной картины мира
- Историческая смена физических картин мира
- Панорама современного естествознания
- Естествознание в аспекте научно-технической революции
- Тенденции развития естествознания
- Проблема классификации наук
- История естествознания
- Зарождение эмпирического научного знания
- Античная наука
- Александрийский период развития науки
- Развитие науки арабских и среднеазиатских народов в средние века
- Период схоластики
- Научная революция XVI–XVII вв.
- Революция в астрономии
- Экспериментальный метод Галилея
- Становление физики как самостоятельной науки
- Революция в математике
- Развитие научных методов в естествознании
- Развитие естествознания в хviii в.
- Физические концепции естествознания
- Механистическая картина мира
- Принцип относительности Галилея
- Механика Ньютона
- Характерные особенности механистической картины мира
- Развитие концепций термодинамики и статистической физики
- Вещественная и корпускулярная теории теплоты
- Необратимость времени в термодинамике
- Первое и второе начала термодинамики
- Принцип возрастания энтропии, хаос и порядок
- Статистический подход к описанию макросистем
- Развитие концепций электромагнитного поля
- "Экспериментальные исследования по электричеству" Фарадея
- Теория электромагнетизма Максвелла
- Корпускулярная и континуальная концепция описания природы
- Развитие представлений о свете
- Концепция дальнодействия и близкодействия
- Развитие концепций пространства и времени в специальной теории относительности
- Принцип относительности
- Преобразование Лоренца
- Релятивистская механика
- Четырехмерное пространство-время в специальной теории относительности
- Экспериментальное подтверждение специальной теории относительности
- Общая теория относительности
- Принцип эквивалентности
- Экспериментальное подтверждение общей теории относительности
- Философские выводы из теории относительности
- Симметрия пространства и времени и законы сохранения
- Мегамир в его многообразии и единстве
- Галактики и структура Вселенной
- Солнечная система
- Концепция расширения Вселенной
- Эволюция Вселенной
- Концепция большого взрыва
- Принципы организации микромира
- Развитие концепции атомизма
- Теория атома Бора – мост от классики к современности
- Корпускулярно-волновые свойства микрочастиц
- Принцип неопределенности
- Принцип дополнительности
- Описание микрообъектов в квантовой механике
- Принцип суперпозиции
- Принцип тождественности
- Принципы причинности и соответствия в квантовой механике
- Фундаментальные взаимодействия в природе
- Гравитационное взаимодействие
- Электромагнитное взаимодействие
- Сильное взаимодействие
- Слабое взаимодействие
- Элементарные частицы
- Характеристики элементарных частиц
- Классификация элементарных частиц
- Структурные уровни организации материи
- Закон постоянства состава
- Закон простых кратных отношений
- Гипотеза Авогадро
- Атомно-молекулярное учение
- Закон сохранения массы и энергии
- Периодический закон Менделеева
- Электронное строение атома
- Структура химических систем
- Теория химического строения Бутлерова
- Химическая связь
- Физико-химические закономерности протекания химических процессов
- Энергетика химических процессов
- Химическая кинетика
- Понятие о катализе и катализаторах
- Реакционная способность веществ
- Обратимые реакции и состояние химического равновесия
- Развитие химии экстремальных состояний
- Особенности биологического уровня организации материи
- Свойства живых систем
- Уровни организации живой природы
- Молекулярный уровень
- Клеточный уровень
- Органно-тканевый уровень
- Организменный уровень
- Популяционно-видовой уровень
- Биогеоценотический и биосферный уровни
- Клетка – структурная и функциональная единица живых организмов
- Клеточная теория
- Химический состав клеток
- Клеточные и неклеточные формы жизни
- Систематика живой природы
- Генетика
- Законы Менделя
- Хромосомная теория наследственности
- Изменчивость
- Генетика человека
- Генная инженерия и биоэтика
- Принципы эволюции живых систем
- Общее понятие прогресса и его проявление в живой природе
- Ламаркизм
- Дарвинизм. Эволюция путем естественного отбора
- Развитие дарвинизма. Основные факторы и движущие силы эволюции
- Доказательства эволюции живой природы
- Биохимическая эволюция
- Основные подходы к проблеме происхождения жизни
- Химическая эволюция
- Коацерватная стадия в процессе возникновения жизни
- Начальные этапы развития жизни на Земле
- Происхождение и эволюция человека
- Положение человека в системе животного мира
- Отряд приматов
- Происхождение человека
- Этапы эволюции человека
- Биосфера и человек
- Концептуальные подходы к изучению биосферы
- Многообразие живых организмов – основа организации и устойчивости биосферы
- Биогеохимические циклы в биосфере
- Эволюция биосферы
- Ноосфера. Путь к единой культуре.
- Охрана биосферы
- Влияние космоса на земные процессы
- Современная наука о человеке
- Здоровье и работоспособность человека
- Физиология человека
- Мозг и сознание
- Сознание – функция мозга
- Смерть мозга и морально-этические и правовые проблемы
- Структура субъективного мира человека
- Эмоции, чувства и интеллект
- Сознание и самосознание
- Сознательное и бессознательное
- Творчество
- Системный подход в естествознании
- Принципы эволюции систем
- Самоорганизация в живой и неживой природе
- Заключение
- Литература