logo
КСЕ Самыгин

4.3.3. Достижения в основных направлениях современной химии

Химию принято подразделять на пять разделов: неор­ганическая, органическая, физическая, аналитическая и химия высокомолекулярных соединений.

Основными задачами неорганической химии являются: изучение строения соединений, установление связи строе­ния со свойствами и реакционной способностью. Также разрабатываются методы синтеза и глубокой очистки ве­ществ. Большое внимание уделяется кинетике и механизму неорганических реакций, их каталитическому ускорению и замедлению. Для синтезов все чаще применяют методы физического воздействия: сверхвысокие температуры и давления, ионизирующее излучение, ультразвук, магнитные поля. Многие процессы проходят в условиях горения или низкотемпературной плазмы. Химические реакции часто сочетают с получением волокнистых, слоистых и монокрис­таллических материалов, с изготовлением электронных схем.

Неорганические соединения применяются как конст­рукционные материалы для всех отраслей промышленнос­ти, включая космическую технику, как удобрение и кормо­вые добавки, ядерное и ракетное топливо, фармацевтиче­ские материалы.

Органическая химия — наиболее крупный раздел хи­мической науки. Если число известных неорганических веществ исчисляется тысячами, то органических веществ известно несколько миллионов. Общепризнано огромное значение химии полимеров. Так, еще в 1910 году С.В. Ле­бедев разработал промышленный способ получения бута­диена, а из него каучука.

В 1936 году У. Карозерс синтезирует «найлон», открыв новый тип синтетических полимеров — полиамиды. В 1938 году Р. Планкет случайно открывает тефлон, со­здавший эпоху синтеза фторполимеров с уникальной тер­мостабильностью, создаются «вечные» смазочные масла (пластмассы и эластомеры), широко используемые косми­ческой и реактивной техникой, химической и электротех­нической промышленностью. Благодаря этим и многим другим открытиям из органической химии выросла химия высокомолекулярных соединений (или полимеров).

98

Начавшиеся в 30-40-е годы широкие исследования фосфорорганических соединений (А.Е. Арбузов) привели к открытию новых типов физиологически активных соеди­нений — лекарственных препаратов, отравляющих ве­ществ, средств защиты растений и др.

Химия красителей практически дала начало химиче­ской индустрии. Например, химия ароматических и гетеро­циклических соединений создала первую отрасль химиче­ской промышленности, продукция которой ныне превосхо­дит 1 млрд. тонн, и породила новые отрасли — произ­водство душистых и лекарственных веществ.

Проникновение органической химии в смежные облас­ти — биохимию, биологию, медицину, сельское хозяйство — привело к изучению свойств, установлению структуры и синтезу витаминов, белков, нуклеиновых кислот, антибио­тиков, новых средств ускорения роста растений и средств борьбы с вредителями.

Ощутимые результаты дает применение математическо­го моделирования. Если нахождение какого-либо фарма­цевтического препарата или инсектицида требовало синтеза 10—20 тыс. веществ, то с помощью математического моде­лирования выбор делается лишь в результате синтеза не­скольких десятков соединений.

Роль органической химии в биохимии трудно переоце­нить. Так, в 1963 году В. Виньо синтезировал инсулин, также были синтезированы окситоцин (пептидный гормон), вазопрессин (гормон обладает антидиуретическим действи­ем), брадикинин (обладает сосудорасширяющим действи­ем). Разработаны полуавтоматические методы синтеза по­липептидов (Р. Мерифилд, 1962).

Вершиной достижений органической химии в генной инженерии явился первый синтез активного гена (X. Ко­рана, 1976). В 1977 году синтезирован ген, кодирующий синтез человеческого инсулина, а в 1978-м — ген сомато-статина (способен угнетать секрецию инсулина, пептидный гормон).

Физическая химия объясняет химические явления и устанавливает их общие закономерности. Физическая хи­мия последних десятилетий характеризуется следующими чертами: в результате развития квантовой химии (исполь­зует идеи и методы квантовой физики для объяснения химических явлений) многие проблемы химического строе-

4* 99

ния веществ и механизма реакций решаются на основании теоретических расчетов; наряду с этим широко использу­ются физические методы исследования — рентгенострук-турный анализ, дифракция электронов, спектроскопия, ме­тоды, основанные на применении изотопов и др.

Аналитическая химия рассматривает принципы и ме­тоды изучения химического состава вещества. Включает количественный и качественный анализ. Современные ме­тоды аналитической химии связаны с необходимостью по­лучения полупроводниковых и других материалов высо­кой частоты. Для решения этих задач были разработаны чувствительные методы: активационный анализ, химико-спектральный анализ и др.

Современная химия предстает перед нами как исклю­чительно многогранная и разветвленная система знаний, для которой характерно интенсивное развитие. Важней­шим стратегическим ориентиром этого процесса являет­ся все более тесный синтез химии как науки и химии как технологии промышленного производства.