5.8. Состояния физической системы. Динамические и статистические закономерности в природе
Понятие состояния физической системы является центральным элементом физической теории. Казалось бы, в науке речь должна идти только о закономерностях в поведении различных явлений природы. Открытие этих закономерностей, установление законов природы, отражающих устойчивые, необходимые связи между различными сторонами явления, — вот истинная цель науки. Однако имеются, по крайней мере, два возражения по поводу того, как достичь этой цели. Первое из них указывает на то, что все законы природы всегда носят приближенный характер и действуют в определенных рамках, называемых границами применимости физических законов. Мы уже убедились в существовании трех ограничений в применимости законов Ньютона: во-первых, если скорость рассматриваемых тел близка к скорости света, то нужно применять релятивистскую кинематику и релятивистскую динамику специальной теории относительности. Во-вторых, в случае сильных гравитационных полей следует пользоваться теорией тяготения Эйнштейна, то есть общей теорией относительности. Проявление гравитации как искривления пространства-времени приводит к неадекватности описания поведения частицы в искривленном пространстве с помощью теории Ньютона. В-третьих, классическая ньютоновская ме-
214
ханика не работает в микромире; аппаратом, описывающим движение микрообъектов, является квантовая теория.
Второе возражение состоит в том, что при установлении законов всегда пытаются абстрагироваться от случайностей, множества факторов, всегда сопровождающих любое явление. На это обстоятельство особенно указывает величайший математик Е. Вигнер в своей книге «Этюды о симметрии», подчеркивая, что для описания поведения какого-либо объекта одних только законов природы недостаточно, важно знать также начальные условия, описывающие состояние данного объекта в начальный момент времени. «Именно в четком разделении законов природы и начальных условий и состоит удивительное открытие ньютоновского века», — пишет Е. Вигнер.
Состояние физической системы — это конкретная определенность системы, однозначно детерминирующая ее эволюцию во времени. Для задания состояния системы необходимо: 1) определить совокупность физических величин, описывающих данное явление и характеризующих состояние системы, — параметры состояния системы; 2) выделить начальные условия рассматриваемой системы (зафиксировать значения параметров состояния в начальный момент времени); 3) применить законы движения, описывающие эволюцию системы.
Попробуем применить данный алгоритм к тем областям физики, которые нами рассмотрены в этой книге. Однако предварительно разделим физические теории на динамические и статистические и, используя понятия состояния, попытаемся провести сравнение между ними и выяснить, в каком отношении друг к другу находятся динамические и статистические закономерности в природе. Это глубоко и полно сделано Г.Я. Мякишевым в книге «Динамические и статистические закономерности в физике», результатами которой мы воспользуемся при последующем изложении материала.
Понятие состояния в динамических теориях
Классическая механика
Параметром, характеризующим состояние механисти ческой системы, является совокупность всех координат и импульсов материальных точек, составляющих эту систе-
215
му. Задать состояние механической системы — значит указать все координаты ri (xi, yi, zi) и импульсы Рi всех материальных точек. Основная задача динамики состоит в том, чтобы, зная начальное состояние системы и законы движения (законы Ньютона), однозначно определить состояние системы во все последующие моменты времени, то есть однозначно определить траектории движения частиц. Траектории движения получаются путем интегрирования дифференциальных уравнений движения. Траектории движения дают полное описание поведения частиц в прошлом, настоящем и будущем, то есть характеризуются свойствами детерминированности и обратимости. Здесь полностью исключается элемент случайности, все заранее жестко причинно-следственно обусловлено. Можно сказать, что в динамических теориях необходимость, отраженная в форме закона, выступает как абсолютная противоположность случайному. В науке утвердилась точка зрения о том, что только динамические законы полностью отражают причинность в природе. Причем понятие причинности связывается со строгим детерминизмом в лапласовском духе. Здесь уместно привести фундаментальный принцип, провозглашенный Лапласом, и отметить вошедший в науку в связи с этим принципом образ, именуемый «демоном Лапласа»: «Мы должны рассматривать существующее состояние Вселенной как следствие предыдущего состояния и как причину последующего. Ум, который в данный момент знал бы все силы, действующие в природе, и относительное положение всех составляющих ее сущностей, если бы он еще был столь обширен, чтобы ввести в расчет все эти данные, охватил бы одной и той же формулой движения крупнейших тел Вселенной и легчайших атомов. Ничто не было бы для него недостоверным, и будущее, как и прошедшее, стояло бы перед его глазами».
Возникновение теории относительности не изменило установившегося в классической физике детерминистского подхода. В релятивистской теории, несмотря на совершенно иной взгляд на пространство — время, вся эволюция физических явлений также определяется знанием начальных условий и дифференциальных уравнений движения, на основе чего однозначно можно охарактеризовать состояние системы в прошлом, настоящем и будущем в любой задан-
216
ный момент времени. То есть при описании четырехмерного пространства теория относительности предполагает заданной всю совокупность состояний, соответствующих любому моменту времени (для каждого наблюдателя как совокупность состояний по мере течения его собственного времени).
Классическая равновесная термодинамика вводит две однозначные функции состояния — внутреннюю энергию и энтропию. Понятие равновесности процессов, то есть процессов, протекающих бесконечно медленно, практически снимает вопрос о рассмотрении эволюции систем. Поэтому с помощью термодинамики, в основном, устанавливаются связи между термодинамическими параметрами различных равновесных состояний.
Классическая электродинамика
Здесь состояние электромагнитного поля задается значениями векторов напряженностей Б и Н и индукцией D и В электрических и магнитных полей. Уравнения Максвелла позволяют для этих четырех величин по заданным начальным значениям Б и Н внутри некоторого объема (и граничным условиям) однозначно определить величину электромагнитного поля в любой последующий момент времени.
Понятие состояния в статистических теориях
Статистическая механика
При рассмотрении систем, состоящих из огромного числа частиц (нами рассматривалась молекулярно-кинетиче-ская теория), состояние системы характеризуют не полным набором значений координат и импульсов всех частиц, а вероятностью того, что эти значения лежат внутри определенных интервалов. Тогда состояние системы задается с помощью функции распределения, зависящей от координат, импульсов всех частиц системы и от времени. Функция распределения интерпретируется как плотность вероятности обнаружения той или иной физической величины (например, xt или Pi) в определенных интервалах от хi до xi + + или от Pi до Рi + . По известной функции распределения можно найти средние значения любой физиче-
217
ской величины, зависящей от координат и импульсов, и вероятность того, что эта величина принимает определенное значение в заданных интервалах.
Квантовая механика
В квантовой механике вектором состояния является волновая функция , представляющая собой амплитуду вероятности. Уравнение Шредингера однозначно описывает эволюцию состояния с течением времени. Волновая функция представляет собой, таким образом, полную характеристику состояния: зная волновую функцию , можно вычислить вероятность обнаружения определенного значения любой физической величины и средние значения всех физических величин. Существует важное различие между описанием состояния в статистической физике и в квантовой механике. Оно состоит в том, что состояние в квантовой механике описывается не плотностью вероятности, а амплитудой вероятности. Плотность вероятности пропорциональна квадрату амплитуды вероятности. Это и приводит к сугубо квантовому эффекту интерференции вероятностей.
Как уже отмечалось выше, идеалом классического описания физической реальности считалась динамическая детерминированная форма законов физики. Поэтому первоначально физики негативно относились к введению вероятности в статистические законы. Многие считали, что вероятность в законах свидетельствует о мере нашего незнания. Однако это не так. Статистические законы также выражают необходимые связи в природе. Действительно, во всех фундаментальных статистических теориях состояние представляет собой вероятностную характеристику системы, но уравнения движения по-прежнему однозначно определяют состояние (статистическое распределение) в любой последующий момент времени по заданному распределению в начальный момент. Г.Я. Мякишев подчеркивает, что главное отличие статистических законов от динамических состоит в учете случайного (флуктуаций). В философии давно выработано представление о диалектическом тождестве и различии противоположных сторон любого явления. В диалектике необходимое и случайное — это две противоположности единого явления, две стороны одной медали, которые взаимообусловливают друг друга, взаимопревраща-
218
ются, не существуют друг без друга. Главное различие между динамическими и статистическими законами с философско-методологической точки зрения состоит в том, что в статистических законах необходимость выступает в диалектической связи со случайностью, а в динамических — как абсолютная противоположность случайного. А отсюда вывод: «Динамические законы представляют собой первый низший этап в процессе познания окружающего нас мира; статистические законы обеспечивают более современное отображение объективных связей в природе: они выражают следующий, более высокий этап познания».
- Концепции современного естествознания
- I оглавление
- Раздел I. Научный метод 7
- Раздел II. История естествознания 42
- Раздел III. Элементы современной физики 120
- Раздел IV. Основные понятия и представления химии 246
- Раздел V.. Возникновение и эволюция жизни 266
- Раздел VI. Человек 307
- I введение
- Раздел I научный метод
- 1 .1. Научное наблюдение
- 1.2. Эксперимент
- 1.3. Измерение
- 2. Общенаучные методы теоретического познания
- 2 .1. Абстрагирование и идеализация. Мысленный эксперимент
- 2.2. Формализация. Язык науки
- 2.3. Индукция и дедукция
- 3 .1. Анализ и синтез
- 3.2. Аналогия и моделирование
- Раздел II
- 1.1. Натурфилософия и ее место в истории естествознания. Возникновение античной науки.
- 1.2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
- 2. Естествознание эпохи средневековья
- 3 .1. Научные революции в истории естествознания
- 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
- 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
- 3.4. Химия в механистическом мире
- 3.5. Естествознание Нового времени и проблема философского метода
- 3.6. Третья научная революция. Диалектизация естествознания
- 3.7. Очищение естествознания
- 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- I Естествознание XX века
- 4 .1. Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
- 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
- 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
- 4.3.2. Физика микромира и мегамира. Атомная физика
- 4.3.3. Достижения в основных направлениях современной химии
- 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
- 4.3.5. Кибернетика и синергетика
- Раздел III
- I Пространство и время
- 1 .1. Развитие представлений о пространстве и времени в доньютоновский период
- 1. 2. Пространство и время
- 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
- 2 .1. Принцип относительности Галилея
- 2.2. Принцип наименьшего действия
- 2.3. Специальная теория относительности а. Эйнштейна
- 1. Принцип относительности: все законы природы оди наковы во всех инерциальных системах отсчета.
- 2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах от счета и не зависит от движения источников и приемни ков света.
- 2.4. Элементы общей теории относительности
- 3. Закон сохранения энергии в макроскопических процессах
- 3.1. «Живая сила»
- 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
- 3.3. Внутренняя энергия
- 3.4. Взаимопревращения различных видов энергии друг в друга
- 4. Принцип возрастания энтропии
- 4.1. Идеальный цикл Карно
- 4.2. Понятие энтропии
- 4.3. Энтропия и вероятность
- 4.4. Порядок и хаос. Стрела времени
- 4.5. «Демон Максвелла»
- 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
- 4.7. Синергетика. Рождение порядка из хаоса
- I Элементы квантовой физики
- 5.1. Развитие взглядов на природу света. Формула Планка
- 5.2. Энергия, масса и импульс фотона
- 5.3. Гипотеза де Бройля. Волновые свойства вещества
- 5.4. Принцип неопределенности Гейзенберга
- 5.5. Принцип дополнительности Бора
- 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
- 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
- 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
- 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
- I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
- 6.2. Понятие симметрии
- 6.3. Калибровочные симметрии
- 6.4. Взаимодействия. Классификация элементарных частиц
- 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
- 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
- 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
- Раздел IV
- 1. Химия в системе "общество-природа"
- I Химические обозначения
- Раздел V
- I Теории возникновения жизни
- 1.1. Креационизм
- 1.2. Самопроизвольное (спонтанное) зарождение
- 1.3. Теория стационарного состояния
- 1.4. Теория панспермии
- 1.5. Биохимическая эволюция
- 2.1. Теория эволюции Ламарка
- 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
- 2.3. Современное представление об эволюции
- 3.1. Палеонтология
- 3.2. Географическое распространение
- 3.3. Классификация
- 3.4. Селекция растений и животных
- 3.5. Сравнительная анатомия
- 3.6. Адаптивная радиация
- 3.7. Сравнительная эмбриология
- 3.8. Сравнительная биохимия
- 3.9. Эволюция и генетика
- Раздел VI. Человек
- I Происхождение человека и цивилизации
- 1 .1. Возникновение человека
- 1.2. Проблема этногенеза
- 1.3. Культурогенез
- 1.4. Появление цивилизации
- I Человек и биосфера
- 7 .1. Концепция в.И. Вернадского о биосфере и феномен человека
- Радиоактивное вещество;
- Рассеянные атомы;
- Вещество космического происхождения.
- 7.2. Космические циклы
- 7.3. Цикличность эволюции. Человек как космическое существо
- 344007, Г. Ростов-на-Дону,
- 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.