1 .1. Научное наблюдение
Наблюдение есть чувственное (преимущественно — визуальное) отражение предметов и явлений внешнего мира. Это — исходный метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.
Научное наблюдение (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:
целенаправленностью (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, свя занных с этой задачей);
планомерностью (наблюдение должно проводиться стро го по плану, составленному исходя из задачи исследо вания);
- активностью (исследователь должен активно искать, выделять нужные ему моменты в наблюдаемом явле нии, привлекая для этого свои знания и опыт, исполь зуя различные технические средства наблюдения). Научные наблюдения всегда сопровождаются описани ем объекта познания. Последнее необходимо для фикси рования тех свойств, сторон изучаемого объекта, которые составляют предмет исследования. Описания результатов наблюдений образуют эмпирический базис науки, опираясь на который исследователи создают эмпирические обобще ния, сравнивают изучаемые объекты по тем или иным па раметрам, проводят классификацию их по каким-то свой ствам, характеристикам, выясняют последовательность эта пов их становления и развития.
Почти каждая наука проходит указанную первоначальную, «описательную» стадию развития. При этом, основные требования, которые предъявляются к научному описанию, направлены на то, чтобы оно было возможно более полным, точным и объективным. Описание должно давать достоверную и адекватную картину самого объекта, точно отображать изучаемые явления. Важно, чтобы понятия, используемые для описания, всегда имели четкий и однознач-
10
ный смысл. При развитии науки, изменении ее основ преобразуются средства описания, часто создается новая система понятий.
По способу проведения наблюдения могут быть непосредственными и опосредованными.
При непосредственных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека. Такого рода наблюдения дали немало полезного в истории науки. Известно, например, что наблюдения положения планет и звезд на небе, проводившиеся в течение более двадцати лет Тихо Браге с непревзойденной для невооруженного глаза точностью, явились эмпирической основой для открытия Кеплером его знаменитых законов.
В настоящее время непосредственное визуальное наблюдение широко используется в космических исследованиях как важный (а иногда и незаменимый) метод научного познания. Визуальные наблюдения с борта пилотируемой орбитальной станции — наиболее простой и весьма эффективный метод исследования из космоса параметров атмосферы, поверхности суши и океана.
Хотя непосредственное наблюдение продолжает играть немаловажную роль в современной науке, однако чаще всего научное наблюдение бывает опосредованным, т. е. проводится с использованием тех или иных технических средств. Появление и развитие таких средств во многом определило то громадное расширение возможностей метода наблюдений, которое произошло за последние четыре столетия.
Если, например, до начала XVII века астрономы наблюдали за небесными телами невооруженным глазом, то изобретение Галилеем в 1608 году оптического телескопа подняло астрономические наблюдения на новую, гораздо более высокую ступень. А создание в наши дни рентгеновских телескопов и вывод их в космическое пространство на борту орбитальной станции (рентгеновские телескопы могут работать только за пределами земной атмосферы) позволили проводить наблюдения за такими объектами Вселенной (пульсары, квазары), которые никаким другим путем изучать было бы невозможно.
Подобно развитию технических средств дальних наблюдений, создание в XVII веке оптического микроскопа, а
11
много позднее, уже в XX веке, и электронного микроскопа позволило исследователям наблюдать удивительный мир микрообъектов, микроявлений.
Развитие современного естествознания связано с повышением роли так называемых косвенных наблюдений. Так, объекты и явления, изучаемые ядерной физикой, не могут прямо наблюдаться ни с помощью органов чувств человека, ни с помощью самых совершенных приборов. То, что ученые наблюдают в процессе эмпирических исследований в атомной физике, — это не сами микрообъекты, а только результаты их воздействия на определенные технические средства исследования. Например, при изучении свойств заряженных частиц с помощью камеры Вильсона эти частицы воспринимаются исследователем косвенно — по таким видимым их проявлениям, как образование треков, состоящих из множества капелек жидкости.
Любые научные наблюдения, хотя они опираются в первую очередь на работу органов чувств, требуют в то же время участия и теоретического мышления. Исследователь, опираясь на свои знания, опыт, должен осознать чувственные восприятия и выразить их (описать) либо в понятиях обычного языка, либо — более строго и сокращенно — в определенных научных терминах, в каких-то графиках, таблицах, рисунках и т. п.
Наблюдения могут нередко играть важную эвристическую роль в научном познании. В процессе наблюдений могут быть открыты совершенно новые явления, позволяющие обосновать ту или иную научную гипотезу. Приведем лишь один пример из области истории космических исследований. Участники длительных экспедиций в космос на орбитальной станции «Салют-6» вели наблюдения Мирового океана, ибо над ним и даже в его глубинах формируется погода планеты. В результате этих наблюдений были обнаружены так называемые синоптические вихри. Последние представляют собой специфические образования в океане, размеры и цвет которых бывают различными. Некоторые из них имеют зеленоватую окраску, что характеризует подъем глубинных вод к поверхности, другие отличаются голубой окраской — здесь вода с поверхности уходит в глубину. Эти наблюдения позволили подтвердить гипотезу академика Г.И. Марчука, согласно которой в
12
Мировом океане есть энергоактивные зоны, являющиеся своеобразными «генераторами погоды». Именно над такими аномалиями и начинается формирование циклонов.
Для получения каких-то выводов об исследуемом явлении, для обнаружения чего-то существенного в нем зачастую требуется проведение весьма большого количества наблюдений. Например, для получения даже краткосрочного прогноза погоды необходимо проводить огромное число наблюдений за различными метеорологическими параметрами атмосферы. Такие наблюдения в современном мире осуществляют свыше 10 тысяч метеорологических станций, получающих необходимые данные в районе земной поверхности, и около 800 станций радиозондирования, собирающих данные во всей толще атмосферы. К этому надо добавить метеорологическую информацию, которая является результатом наблюдений, проводимых с оснащенных специальной аппаратурой морских судов и самолетов, беспилотных метеорологических спутников Земли и пилотируемых орбитальных станций. Весь этот обширный комплекс технических средств обеспечивает глобальные наблюдения за состоянием атмосферы, поверхности суши и океана с целью изучения тех физических процессов, которые определяют аномалии погоды на нашей планете.
Из всего вышесказанного следует, что наблюдение является весьма важным методом эмпирического познания, обеспечивающим сбор обширной информации об окружающем мире. Как показывает история науки, при правильном использовании этого метода он оказывается весьма плодотворным.
- Концепции современного естествознания
- I оглавление
- Раздел I. Научный метод 7
- Раздел II. История естествознания 42
- Раздел III. Элементы современной физики 120
- Раздел IV. Основные понятия и представления химии 246
- Раздел V.. Возникновение и эволюция жизни 266
- Раздел VI. Человек 307
- I введение
- Раздел I научный метод
- 1 .1. Научное наблюдение
- 1.2. Эксперимент
- 1.3. Измерение
- 2. Общенаучные методы теоретического познания
- 2 .1. Абстрагирование и идеализация. Мысленный эксперимент
- 2.2. Формализация. Язык науки
- 2.3. Индукция и дедукция
- 3 .1. Анализ и синтез
- 3.2. Аналогия и моделирование
- Раздел II
- 1.1. Натурфилософия и ее место в истории естествознания. Возникновение античной науки.
- 1.2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
- 2. Естествознание эпохи средневековья
- 3 .1. Научные революции в истории естествознания
- 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
- 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
- 3.4. Химия в механистическом мире
- 3.5. Естествознание Нового времени и проблема философского метода
- 3.6. Третья научная революция. Диалектизация естествознания
- 3.7. Очищение естествознания
- 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- I Естествознание XX века
- 4 .1. Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
- 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
- 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
- 4.3.2. Физика микромира и мегамира. Атомная физика
- 4.3.3. Достижения в основных направлениях современной химии
- 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
- 4.3.5. Кибернетика и синергетика
- Раздел III
- I Пространство и время
- 1 .1. Развитие представлений о пространстве и времени в доньютоновский период
- 1. 2. Пространство и время
- 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
- 2 .1. Принцип относительности Галилея
- 2.2. Принцип наименьшего действия
- 2.3. Специальная теория относительности а. Эйнштейна
- 1. Принцип относительности: все законы природы оди наковы во всех инерциальных системах отсчета.
- 2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах от счета и не зависит от движения источников и приемни ков света.
- 2.4. Элементы общей теории относительности
- 3. Закон сохранения энергии в макроскопических процессах
- 3.1. «Живая сила»
- 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
- 3.3. Внутренняя энергия
- 3.4. Взаимопревращения различных видов энергии друг в друга
- 4. Принцип возрастания энтропии
- 4.1. Идеальный цикл Карно
- 4.2. Понятие энтропии
- 4.3. Энтропия и вероятность
- 4.4. Порядок и хаос. Стрела времени
- 4.5. «Демон Максвелла»
- 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
- 4.7. Синергетика. Рождение порядка из хаоса
- I Элементы квантовой физики
- 5.1. Развитие взглядов на природу света. Формула Планка
- 5.2. Энергия, масса и импульс фотона
- 5.3. Гипотеза де Бройля. Волновые свойства вещества
- 5.4. Принцип неопределенности Гейзенберга
- 5.5. Принцип дополнительности Бора
- 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
- 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
- 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
- 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
- I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
- 6.2. Понятие симметрии
- 6.3. Калибровочные симметрии
- 6.4. Взаимодействия. Классификация элементарных частиц
- 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
- 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
- 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
- Раздел IV
- 1. Химия в системе "общество-природа"
- I Химические обозначения
- Раздел V
- I Теории возникновения жизни
- 1.1. Креационизм
- 1.2. Самопроизвольное (спонтанное) зарождение
- 1.3. Теория стационарного состояния
- 1.4. Теория панспермии
- 1.5. Биохимическая эволюция
- 2.1. Теория эволюции Ламарка
- 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
- 2.3. Современное представление об эволюции
- 3.1. Палеонтология
- 3.2. Географическое распространение
- 3.3. Классификация
- 3.4. Селекция растений и животных
- 3.5. Сравнительная анатомия
- 3.6. Адаптивная радиация
- 3.7. Сравнительная эмбриология
- 3.8. Сравнительная биохимия
- 3.9. Эволюция и генетика
- Раздел VI. Человек
- I Происхождение человека и цивилизации
- 1 .1. Возникновение человека
- 1.2. Проблема этногенеза
- 1.3. Культурогенез
- 1.4. Появление цивилизации
- I Человек и биосфера
- 7 .1. Концепция в.И. Вернадского о биосфере и феномен человека
- Радиоактивное вещество;
- Рассеянные атомы;
- Вещество космического происхождения.
- 7.2. Космические циклы
- 7.3. Цикличность эволюции. Человек как космическое существо
- 344007, Г. Ростов-на-Дону,
- 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.