3.3.Ядерные транскрипты и их транспорт
Одна из важнейших функций клеточного ядра является реализация генетической информации в виде синтеза целого ряда РНК или служащих матрицами для синтеза белка, или образующих аппарат белкового синтеза. Синтез разного типа РНК на матрицах ДНК хроматина, транскрипция, включает в себя образование нескольких типов РНК, синтезируемых с помощью различных РНК-полимераз, ферментов синтезирующих РНК по одной из цепей матричной ДНК. Всего в эукариотических клетках встречается 5 типов РНК (см. табл. 8).
Таблица 8. Типы РНК, их количество, стабильность и ферменты, участвующие в их синтезе.
№ пп | Тип РНК | Количество в % | % синтезированных молекул за ед времен | Фермент |
1 2 3 4 5 | иРНК рРНК тРНК мяРНК митРНК | 10 50-70 25 5 15 | 58 39
3 | РНК-полимераза II РНК-полимераза I РНК-полимераза II РНК-полимераза II |
Информационные РНК, самые разнообразные по величине и по строению нуклеотидных последовательностей являются самыми нестабильными по времени их жизни: они синтезируются в большом количестве и быстро деградируют, что обеспечивает смену функциональных активностей клетки. В связи с их быстрой заменой общее число их относительно невелико, 10% от массы всех РНК в клетке. Эти иРНК синтезируются при участии фермента РНК-полимеразы II, которая может образовывать первичную копию РНК с любого гена, кодирующего структуру белка. Дальнейшее созревание этих первичных транскриптов, их значительное укорочение и перестройка (сплайсинг – см. ниже) происходит с помощью особых рибонуклеопротеидных частиц, содержащих малые ядерные РНК (мяРНК). Эти мяРНК сннтезируются также с помощью этого фермента, их количество в клетке невелико (5%), но они более стабильны и долгоживущие. К мяРНК относится целая гетерогенная группа РНК, входящая в состав малых РНП-частиц, таких как SRP, теломераза, сплайсосомы и др. (см. ниже). Все остальные клеточные РНК необходимы для создания аппарата белкового синтеза. Рибосомные РНК синтезируются с помощью РНК-полимеразы I, они представляют основную массу клеточных РНК и относительно стабильны. Одна из рибосомных РНК, 5S РНК, а также 20 трансферных РНК, тоже стабильных, синтезируются с помощью РНК-полимеразы III. Митохондриальные РНК синтезируются в самих митохондриях независимо от синтеза РНК в ядре.
Реализация генетической информации, выражающаяся в синтезе разнообразных молекул РНК должна быть связана с изменением морфологии ядерных компонентов. На светооптическом уровне активация ядерной транскрипции всегда связана с деконденсацией хроматина, с увеличением объема ядрышек, с повышением их базофилии, т.е. с увеличением в них количества РНК. Эти общие признаки увеличения ядерной активности мало что дают для понимания хода молекулярных процессов на уровне реальных ядерных компонентов. Что происходит с участками хроматина, заключающими индивидуальный ген, кодирующий определенный белок, изучать очень трудно, т.к. эти гены в подавляющем большинстве случаев существуют в единичных копиях и проследить в гигантском клубке деконденсированных интерфазных хромосом за работой индивидуального гена чрезвычайно трудно (хотя и возможно).
Относительно более просто эту же задачу можно решить на генах многократно повторенных в геноме, таких как гены рибосомных РНК, входящих в состав интерфазных ядрышек, основной функцией которых является образование рибосом. Изучая ультраструктуру ядрышек и особенности морфологии синтеза рибосомных РНК впервые удалось с помощью электронного микроскопа визуализировать работающий ген.
- Оглавление
- 5. Механизмы клеточного деления
- 6. Гибель клеток: некроз и апоптоз
- Цитология и гистология
- 1. Клеточная теория
- 2. Методы цитологии
- 2.1.Световая микроскопия
- 2.2.Витальное (прижизненное) изучение клеток
- 2.3.Изучение фиксированных клеток
- 2.4.Электронная микроскопия
- 3. Строение клеточного ядра
- 3.1. Центральная догма молекулярной биологии
- 3.2. Морфология ядерных структур
- 3.2.1. Структура и химия хроматина
- 3.2.2. Ядерный белковый матрикс
- 3.2.3. Общая организация митотических хромосом
- 3.3.Ядерные транскрипты и их транспорт
- 3.3.1. Ядрышко – источник рибосом
- 3.3.2. Нерибосомные продукты клеточного ядра
- 3.4. Ядерная оболочка
- 4.Цитоплазма
- 4.1. Гиалоплазма и органеллы.
- 4.2. Общие свойства биологических мембран
- 4.2.1. Плазматическая мембрана
- 4.2.2.Специальные межклеточные соединения
- 4.2.3.Клеточная стенка (оболочка) растений
- 4.2.4.Клеточные оболочки бактерий
- 4.3. Вакуолярная система внутриклеточного транспорта
- 4.3.1.Гранулярный эндоплазматический ретикулум
- 4.3.2. Аппарат (комплекс) Гольджи
- 4.3.3. Лизосомы
- 4.3.4. Гладкий ретикулум
- 4.3.5.Вакуоли растительных клеток.
- 4.3.5.Пероксисомы (микротельца)
- 4.4.Секреция белков и образование мембран у бактерий
- 4.5. Цитоплазма: системы энергообеспечения клеток
- 4.5.1. Митохондрии – строение и функции
- 4.5.2. Пластиды
- 4.6. Цитоплазма: Опорно-двигательная система (цитоскелет)
- 4.5.1. Промежуточные филаменты
- 4.6.2.Микрофиламенты
- 4.6.3. Микротрубочки
- 4.6.4. Клеточный центр
- 4.6.5.Базальные тельца. Строение и движение ресничек и жгутиков
- 4.6.6.Двигательный аппарат бактерий
- 5. Механизмы клеточного деления
- 5.1.2.Митоз растительной клетки
- 5.2.Деление бактериальных клеток
- 5.3. Мейоз
- 5.4. Регуляция клеточного цикла
- 6. Гибель клеток: некроз и апоптоз
- Список литературы