Электромагнитное взаимодействие. Электромагнитная теория поля
Непосредственную связь между электричеством и магнетизмом открыл в 1819 г. датский профессор физики Ганс Эрстед. Проводя опыты, ученый обнаружил, что всякий раз, когда он включал ток, магнитная стрелка, находящаяся поблизости от проводника с током, стремилась повернуться перпендикулярно проводнику, а когда выключал, магнитная стрелка возвращалась в исходное положение. Ученый сделал вывод: вокруг проводника с током возникает магнитное поле, которое воздействует на магнитную стрелку. Это свойство тока используется во множестве электрических приборов. Если магнитную стрелку поднести к проводу с переменным током, то она останется неподвижной. Однако это не значит, что вокруг проводника с переменным током нет магнитного поля. Магнитное поле есть, но оно тоже переменное. Магнитная же стрелка не будет отклоняться только вследствие своей инерционности, она не будет успевать следовать за изменениями магнитного поля.
Взаимодействие неподвижных электрических зарядов осуществляется посредством электростатического поля. Электростатическое поле создается заряженными частицами. В случае нескольких частиц выполняется принцип суперпозиции: полное поле равно сумме полей, создаваемых каждым из источников. Количественной характеристикой электростатического поля является вектор напряженности Е, равный по определению силе, действующей со стороны поля на единичный заряд, помещенный в рассматриваемую точку пространства.
Графически поле удобно изображать в виде силовых линий, кривых, в каждой точке которых вектор Е направлен по касательной. Величина напряженности определяется густотой линий. Линии вектора Е начинаются на положительных зарядах или на бесконечности, оканчиваются - на отрицательных или на бесконечности. Замкнутых линий электростатического поля не существует. Движение частиц в электростатических полях определяется тем, что электрические силы (F=QE), направленные вдоль поля (в случае положительно заряженных частиц) и против (в случае отрицательных), способны изменять скорость зарядов как по величине, так и по направлению. Это обуславливает широкое использование электростатических полей для разгона и управления движением заряженных частиц. Так в электронно-лучевых трубках телевизоров и осциллографов электроны создаются и разгоняются в заряженном до разности потенциалов около 30 кВ. конденсаторе - электронной пушке и посылаются в нужную точку флюоресцирующего при их ударах экрана при помощи изменяемых во времени полей в конденсаторах, образующих отклоняющую систему.
Движущиеся заряды (электрический ток) наряду с электрическим полем возбуждают и магнитное поле, то есть порождают электромагнитное поле, посредством которого осуществляются электромагнитные взаимодействия. Таким образом, электричество неразрывно связано с магнетизмом. Магнитные поля создаются движущимися зарядами, подчиняются принципу суперпозиции и могут быть рассчитаны.
Электромагнитные явления описываются классической электродинамикой, в основе которой лежат уравнения Д. К. Максвелла. Он полностью воспринял идеи М. Фарадея о существовании электромагнитного поля, то есть о реальности процессов в пространстве возле зарядов и токов. Он считал, что тело не может действовать там, где его нет. Первое, что сделал Максвелл, – он придал идеям Фарадея строгую математическую форму, столь необходимую в физике. Выяснилось, что с введением понятия поля законы Кулона и Ампера стали выражаться наиболее полно, глубоко и изящно. В явлении электромагнитной индукции Максвелл усмотрел новое свойство полей: переменное магнитное поле порождает в пустом пространстве электрическое поле с замкнутыми силовыми линиями (так называемое вихревое электрическое поле). Развивая идеи М. Фарадея, он создал теорию электромагнитного поля, ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света.
Открытие основных свойств электромагнитного поля было сделано Максвеллом без какой-либо опоры на эксперимент. Им была высказана гениальная догадка о том, что переменное электрическое поле порождает магнитное поле, как и обычный электрический ток (гипотеза о токе смещения). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название уравнений Максвелла. Из уравнений Максвелла следовал фундаментальный вывод: конечность скорости распространения электромагнитных взаимодействий. Скорость оказалась равной скорости света в вакууме: около 300000 км/с. Отсюда Максвелл сделал заключение, что свет есть форма электромагнитных волн.
Электромагнитные силы не универсальны. Они действуют лишь между электрически заряженными частицами. Тем не менее, они определяют структуру материи и физические процессы в широком пространственном интервале масштабов от 10-13до 10־7см (на меньших расстояниях определяющими становятся ядерные взаимодействия, а на больших нужно учитывать и гравитационные силы). Главная причина в том, что вещество построено из электрически заряженных отрицательных электронов и положительных атомных ядер. Именно существование зарядов двух знаков обеспечивает действие как сил притяжения между разноименными зарядами, так и сил отталкивания между одноименными, и эти силы очень велики по сравнению с силами гравитации. С увеличением расстояния между заряженными частицами электромагнитные силы медленно (обратно пропорционально квадрату расстояния) убывают, подобно гравитационным силам. Но заряженные частицы образуют нейтральные системы атомы и молекулы, силы взаимодействия, между которыми проявляются лишь на очень малых расстояниях. Существенен также сложный характер электромагнитных взаимодействий: они зависят не только от расстояний между заряженными частицами, но и от их скоростей и даже ускорений.
По отношению к реакции на внешнее магнитное поле вещества подразделяются на диамагнетики (ослабляют магнитное поле), парамагнетики (поле в веществе незначительно увеличивается) и ферромагнетики (поле возрастает в десятки тысяч раз и не исчезает после выключения внешнего поля).
С прогрессом науки значение классического учения об электричестве не уменьшилось. Были определены лишь границы применения классической электродинамики. Эти границы устанавливаются квантовой теорией. Классическая электродинамика успешно описывает поведение электромагнитного поля при достаточно медленных колебаниях этого поля. Чем больше частота колебаний, тем отчетливее обнаруживаются квантовые (корпускулярные) свойства электромагнитного поля.
- Министерство образования российской федерации
- Оглавление
- Предисловие
- Введение
- Методические рекомендации
- Глава 1. Структура естествознания
- 1.1. Предмет естествознания
- 1.1.1. Анализ понятия «природа»
- 1.1.2. Естествознание донаучное, преднаучное и научное
- 1.1.3. Неисчерпаемость предмета естествознания
- 1.1.4. Специфика донаучного и преднаучного естествознания
- 1.1.5. Специфика научного естествознания
- 1.2. Генезис научного естествознания
- 1.2.1. Перспективы античной преднауки
- 1.2.2. Замещение реальных объектов идеальными
- 1.2.3. Операции преобразования и моделирование изменений
- 1.3. Структура естественнонаучного познания
- 1.3.1. Принципы научного познания
- 1.3.2. Общие методы познания
- 1.3.3. Основные формы естествознания6
- 1.3.4. Непостижимая эффективность математики8
- Глава 2. Этапы развития естествознания
- 2.1. Ступени развития знания
- 2.1.1. «Естественная магия»
- 2.1.2. Магия и религия
- 2.1.3. Религия и естествознание
- 2.1.4. Специфика восточной преднауки
- 2.1.5. Письменность
- 2.2. Естественнонаучные аспекты античной натурфилософии
- 2.2.1. Евклидова геометрия - первая стандартная научная теория
- 2.2.2. Древнегреческий атомизм
- 2.2.3. Механика Архимеда16
- 2.2.4. Становление астрономии
- 2.3. Значение арабской системы знаний в истории естествознания21
- 2.3.1. Физические достижения арабского средневековья22
- 2.3.2. Астрономия арабо-мусульманского средневековья
- 2.4. Научные революции
- 2.4.1. Первая научная революция (xviIвек). Г. Галилей
- 2.4.2. Вторая научная революция (кон. XviiIв.- нач.XiXвека). И. Ньютон
- 2.4.3. Третья научная революция (кон. XiXв.- сер.XXвека)
- 2.4.4. Четвёртая научная революция (кон. XXвека)
- 2.5. Организация современного естествознания
- 2.5.1. Иерархия естественнонаучных законов
- 2.5.2. Этические принципы науки27
- 2.5.3. Роль междисциплинарных исследований в естествознании
- Глава 3. Фундаментальные Концепции естествознания
- 3.1. Термодинамика
- 3.1.1. Роль тепловых явлений в природе
- 3.1.2. Вещественная теория теплоты.
- 3.1.3. Корпускулярная теория теплоты
- 3.1.4. Законы термодинамики
- 3.2. Молекулярно-кинетическая теория (статистическая механика)
- 3.2.1. Основные положения молекулярно-кинетических представлений
- 3.2.2. Дискретность вещества
- Химия. Периодическая таблица химических элементов д. И. Менделеева32
- 3.2.4. Закон сохранения энергии
- 3.3. Электромагнитная теория
- 3.3.1. История открытия электричества
- 3.3.2. М. Фарадей: исследования электромагнетизма
- Заряд и поле. Закон сохранения электрического заряда
- Проводники, полупроводники и диэлектрики. Электрический ток
- Электромагнитное взаимодействие. Электромагнитная теория поля
- 3.4. Квантовая теория
- 3.4.1. Хронология становления квантовой теории
- 3.4.2. Гипотеза м. Планка. Кванты
- 3.4.3. Фотоэлектрический эффект и дискретная природа света
- 3.4.4. Квантовая теория атома н. Бора
- 3.4.5. Вероятностный характер процессов в микромире
- 3.4.6. Гипотеза Луи де Бройля об универсальности корпускулярно-волнового дуализма
- 3.4.7. Принцип неопределённости в. Гейзенберга
- 3.4.8. Волновая механика и уравнение э. Шредингера
- 3.4.9. Принцип дополнительности н. Бора
- 3.5. Симметрия
- 3.5.1. Симметрия и законы сохранения
- 3.5.2. Принципы, организующие сходство
- 3.5.3. Роль симметрии в организации мира
- Глава 4. Концепции движения, пространства и времени
- 4.1. Генезис представлений о пространстве и времени
- 4.1.1.Биологические предпосылки времени и виды пространства.
- 4.1.2. Пространство и время мифа и натурфилософии
- 4.1.3. Теоцентрическая модель пространства и времени
- 4.2. Классические концепции пространства и времени
- 4.2.1. Проблема континуальности и дискретности пространства и времени
- 4.2.2. Классические интерпретации пространства и времени
- 4.2.3. Проблемы реального пространства
- 4.3. Предпосылки неклассических интерпретаций пространства и времени
- 4.3.1. Принцип относительности и инерциальные системы (г. Галилей)
- Эфир как абсолютная система отсчёта. Опыт Майкельсона - Морли
- 4.3.3. Принцип относительности и электродинамика Максвелла
- 4.4. Специальная теория относительности (сто)
- 4.4.1. А. Эйнштейн. Единство пространства и времени. Связь массы и энергии38
- 4.4.3. Пространство и время в инерциальных системах
- 4.4.4. Неоднозначность геометрии физического пространства. Неевклидовы геометрии
- 4.5. Общая теория относительности (ото)
- 4.5.1. Инерция и гравитация
- 4.5.2. Теория гравитации
- 4.5.3. Гравитационные массы и искривление пространства - времени
- Глава 5. Хаос. Самоорганизация. Сложность
- 5.1. Хаос и порядок
- 5.1.1. Энтропия41
- 5.1.2. Принципы системности и целостности
- 5.1.3. Нелинейные системы. Рождение порядка
- 5.2. Самоорганизация
- 5.2.1. Синергетика
- 5.2.2 Механизм самоорганизации
- 5.2.3. Самоорганизация в диссипативных структурах
- 5.3. Необходимость и случайность
- 5.3.1. Проявление необходимости и случайности
- 5.3.2. Необходимость хаоса
- 5.3.3. Смысл информации
- 5.4. Сложность44
- 5.4.1. Понимание сложности. Неравновесное состояние систем
- 5.4.2. Сложное поведение и фазовое пространство45
- 5.4.3. Сложность поведения живых и социальных систем
- 5.4.4. Сложность адаптивных стратегий в живом мире
- 5.5. Управление
- 5.5.1. Кибернетика и теория управления
- 5.5.2. Информационная структура управления
- 5.5.3. Эффект обратной связи
- Глава 6. Жизнь
- 6.1. Проблема возникновения жизни
- 6.1.1. Специфика жизни как особого уровня организации материи
- 6.1.2. Гипотеза творения (креационизм)
- 6.1.3. Гипотеза спонтанного зарождения жизни
- 6.1.4. Гипотеза стационарного состояния
- 6.1.5. Гипотеза панспермии
- 6.1.6. Теория биохимической эволюции
- 6.2. Структура живого вещества
- 6.2.1. Признаки живого вещества
- 6.2.2. Виды регуляции организма
- 6.2.3. Постоянство внутренней среды (гомеостаз)
- 6.3. Теории эволюции
- 6.3.1. Зарождение эволюционного учения (ж. Ламарк, ж. Кювье, ч. Лайель)
- 6.3.2. Эволюционная теория естественного отбора (ч. Дарвин, а. Уоллес)52
- 6.3.3. Номогенез как альтернатива дарвинизму и как его дополнение
- 6.3.4. Вид и видообразование
- 6.3.5. Проблемы видообразования
- 6.4. Теория наследственности
- 6.4.1. Закон доминирования г. Менделя
- 6.4.2. Хромосомная теория наследственности
- 6.4.3. Структура гена. Расшифровка генетического кода
- 6.4.4. Днк, её роль в реализации наследственной информации
- 6.4.5. Клеточная теория (т. Шван, м Шлейден)
- 1.4.6. Биогенетический закон
- 6.5. Философское и естественнонаучное постижение смерти
- 6.5.1. Биологический и социальный смысл смерти
- 6.5.2. Что такое бессмертие?
- 6.5.3. Социальные следствия развития генной инженерии
- 6.5.4. Социальные и этические проблемы клонирования
- Глава 7. Биосфера
- 7.1. Генезис биосферы
- 7.1.1. Геологические условия возникновения биосферы
- 7.1.2. Эволюция биосферы. Живое вещество
- 7.1.3. Роль абиотических и биотических круговоротов
- Климатические первичные периодические
- 7.2. Биогеохимические процессы в биосфере
- 7.2.1. Состав вещества биосферы
- 7.2.2. Особенности основных биосферных циклов
- Биосферный цикл углерода
- Биосферный цикл азота
- Биосферный цикл фосфора
- 7.2.3. Биохимические функции живого вещества
- 7.2.4. Биогенная миграция атомов и биогеохимические принципы
- 7.3. Экологическая структура биосферы
- Биосфера - многокомпонентная иерархическая система
- Прокариоты и эукариоты. Бактерии. Вирусы и сине-зелёные водоросли
- 7.3.3. Растения. Грибы. Животные
- 7.4. Глобальное биологическое разнообразие и подходы к его изучению
- 7.4.1. Современные представления о видовом разнообразии биосферы74
- 7.4.2. Современные подходы к исследованию биоразнообразия75
- Популяционный подход
- Экосистемный подход
- 7.5. Ноосферогенез
- 7.5.1. В. И. Вернадский о переходе биосферы в ноосферу
- 7.5.2. Естественноисторические аспекты трансформации биосферы в ноосферу
- 7.5.3. Антропоцентризм и биосферное мышление
- Глава 8. Человек
- 8.1. Человек как вид
- 8.1.1. Человек: особый вид животных
- 8.1.2. Культурный и биологический аспекты эволюции человека
- 8.1.3. Нарушение основного биологического закона
- 8.2. Сознание и поведение
- 8.2.1. Функции головного мозга. Успехи нейрофизиологии
- 8.2.2. Поведение
- 8.2.3. Бихевиоризм
- 8.2.4. Гештальтпсихология
- 8.2.5. Этология и социобиология
- 8.3. Современное мировоззрение и планетарные проблемы
- 8.3.1. Проблема формирования современного мировоззрения
- 8.3.2. Глобальные последствия развития цивилизации
- 8.3.3. Деятельность «Римского клуба» и института л. Брауна «Worldwatch»
- 8.3.4. Новые ценности85
- 8.4. Концепция устойчивого развития
- 8.4.1. Экологическая и экономическая компоненты деятельности
- 8.4.2. Общие положения концепции устойчивого развития
- 8.4.3. Условия устойчивого развития и ключевые понятия концепции
- 8.5. Искусственный интеллект (ии)
- 8.5.1. Основные направления развития ии
- 8.5.2. Знания и их представление
- 8.5.3. Проблема понимания естественного языка
- Глава 9. Иерархия мироздания
- 9.1. Макромир
- 9.1.1. Основные этапы развития представлений о Вселенной
- 9.1.2. Релятивистская космология (а. Эйнштейн, а. А. Фридман)
- 9.1.3. Концепция расширяющейся Вселенной
- 9.1.4. Концепция «Большого Взрыва»
- 9.1.5. Антропный принцип90
- 9.2. Мезомир
- 9.2.1. Эволюция планеты Земля
- 9.2.2. Экологическая структура мезомира
- 9.2.3. Информационные свойства мезомира
- 9.3. Микромир
- 9.3.1. Учение об элементарных частицах
- 9.3.2. Элементарная структура вещества. Атом
- 9.3.3. Устойчивость и неустойчивость частиц. Термоядерные процессы. Ядро атома
- 9.3.4. Фундаментальные взаимодействия и законы природы92
- 9.3.5. Фундамент материи: физический вакуум и его состояния93
- 9.4. Виртуальные реальности
- 9.4.1.Значение термина «виртуальная реальность»
- 9.4.2. Компьютерная виртуальная реальность
- 9.4.3. Способы существования виртуальной реальности
- 9.4.4. О философии виртуальной реальности и киберпространства
- 9.5. Поиск внеземных цивилизаций
- 9.5.1. О возможности существования жизни и разума во Вселенной
- 9.5.2. О возможности информационного контакта с внеземными цивилизациями
- 9.5.3. О возможных формах технологической активности разума во Вселенной
- Летопись естественнонаучных открытий Период становления физики как науки
- Первый этап развития естествознания (кон. XviIв. – 60 годыXiXв.)
- Второй этап развития естествознания (60-е годы XIX в. - 1894 г.)
- Период современной физики
- Важнейшие открытия в биологии и медицине в хх веке
- Хронология клонирования
- Летопись открытий в химии
- Зарождение научной химии
- Утверждение в химии атомно-молекулярного учения
- Великие открытия в химии в хх веке
- Астрономия в хх веке
- Литература по главам Глава 1. Структура естествознания
- Глава 2. Этапы развития естествознания
- Глава 3. Фундаментальные концепции естествознания
- Глава 4. Концепции движения, пространства и времени
- Глава 5. Хаос. Самоорганизация. Сложность
- Глава 6. Жизнь
- Глава 7. Биосфера
- Глава 8. Человек
- Глава 9. Иерархия мироздания
- Литература дополнительная
- Словарь терминов
- Примечания
- 137 138