4.4.1. А. Эйнштейн. Единство пространства и времени. Связь массы и энергии38
Веками казалось очевидным, что существует трехмерное пространство, в котором царствуют законы геометрии, установленные еще древними греками. И это пространство, неизменно однородное, являясь вместилищем всего существующего само в себе, не содержит каких либо иных свойств.
Пространство считалось бесконечным, и в силу его однородности был очевиден принцип относительности: относительными становились положения вещей в пространстве и, следовательно, - системы отсчета, понимаемые как определенные системы независимых координат, служащие для задания положения объектов относительно принятой точки отсчета.
Было время - один общий для всего и всех режиссер событий. Всякое движение происходит во времени. За многовековую историю человечество так привыкло к понятию времени, что на вопрос: что это такое? ответить оказалось весьма затруднительно. Обычно этим вопросом не задаются, а считают время фундаментальной категорией физического мира (независимой первопричиной). Время однородно. Оно течет одинаково во все времена, в любой точке пространства, независимо от системы отсчета, в которой эта точка определена.
Считалось очевидным, что понятие одновременности процессов, протекающих в различных точках пространства, не нуждается в определении, так что интервал между двумя одинаковыми событиями неизменен, в каких бы областях пространства эти события не происходили. Время приобретало некое абсолютное значение, что хорошо соотносилось с религиозным мировоззрением людей. Понимая время как нечто невещественное, метафизическое, люди, тем не менее, установили определенные единицы его измерения, принимая в качестве таковых протяжение по длительности определенных циклических процессов, и тем самым, интуитивно выразили физическую сущность времени вообще.
Наконец, масса - мера вещества, содержащегося в теле. Всякое вещество проявляет свои качества физическими свойствами, но и мера, количество вещества, также проявляется определенными свойствами - тяготением и инертностью, и только этими свойствами в физике и определяется, так что всякая дискуссия о равенстве или неравенстве массы, тяготеющей и инертной, казалась не более чем пустым наукословием. Изменить массу можно было только добавлением к ней или отнятием от нее какого-то количества вещества. Мир был логичен и линеен.
Эту идиллическую картину природы было суждено разрушить Эйнштейну. В 1905 г. он опубликовал свою первую работу по теории относительности. Все странные факты, накопившиеся к тому времени в физике, от удивительного постоянства скорости света до не менее удивительного изменения массы электрона, получили простое и изящное объяснение. Прежде всего, скорость света объявлялась неизменной величиной, не зависящей от того, движется наблюдатель или находится в покое:
в любом случае, даже если лаборатория в ракете будет лететь со скоростью света, прибор Майкельсона неизбежно покажет одну и ту же величину – около 300000 километров в секунду. «Догоняя свет со скоростью с (скорость света в вакууме), я должен был бы наблюдать этот луч как неподвижное электромагнитное поле, лишь колеблющееся в пространстве, - писал Эйнштейн. - Но, по-видимому, такой картины не бывает. Интуитивно мне с самого начала казалось ясным, что с точки зрения летящего наблюдателя все должно было бы происходить по тем же законам, что и для наблюдателя, покоящегося относительно Земли».
Из этого вытекало, что пространство и время (поэтому мы и говорим теперь о пространстве-времени), масса, энергия, движение взаимосвязаны. Понятия абсолютного пространства, времени и движения устранялись. Все движущиеся тела становились равноправными с точки зрения находящихся на них наблюдателей. Абсолютно никакими опытами, проведенными внутри равномерно и прямолинейно движущейся системы, нельзя определить, движется она или находится в покое. Любой экспериментатор может в этом случае считать себя покоящимся, а всех остальных - движущимися. Результаты решений уравнений, описывающих любые процессы, от этого не изменятся. Но как обстоит дело с практическим подтверждением следствий специальной теории относительности?
Одной из практических реализаций положений этой теории являются колоссальные ускорители элементарных частиц: размеры и огромная мощность, которая нужна, чтобы привести их в действие, - вот следствия, прямо вытекающие из теории относительности. Чем быстрее летит частица, тем она становится массивнее, а чтобы изменить массу, приходится расходовать соответствующую энергию. Ну, а время? Формулы Эйнштейна говорят, что сторонний наблюдатель увидит, как время, в котором живет быстро движущаяся частица или экипаж ракетного корабля, протекает медленнее, чем в лаборатории, откуда ведется наблюдение. Этот вывод для многих кажется еще более фантастическим, нежели изменение массы. Но опыты упрямо говорят свое: да, время может изменяться.
В верхних слоях атмосферы, на высоте 10...30 километров, космические лучи сталкиваются с атомами кислорода и азота. При этом образуются элементарные частицы пи-мезоны. Время их жизни в неподвижном относительно лаборатории состоянии - 2,6 10-8секунды. После этого они распадаются. Это очень хорошо видно, когда искусственно полученный пи-мезон останавливают в поглотителе: от момента остановки до распада проходит именно столько времени. В силу этого родившийся в атмосфере пи-мезон может пролететь (даже со скоростью света!) не более 0,66 километра. Но вдруг эта элементарная частица становится долгожителем. Мы видим, как она пролетает целых 16 километров и живет соответственно в десятки раз дольше. Между тем, с точки зрения внутренних свойств пи-мезона, он существует по-прежнему 2,6 10-8секунды.
- Министерство образования российской федерации
- Оглавление
- Предисловие
- Введение
- Методические рекомендации
- Глава 1. Структура естествознания
- 1.1. Предмет естествознания
- 1.1.1. Анализ понятия «природа»
- 1.1.2. Естествознание донаучное, преднаучное и научное
- 1.1.3. Неисчерпаемость предмета естествознания
- 1.1.4. Специфика донаучного и преднаучного естествознания
- 1.1.5. Специфика научного естествознания
- 1.2. Генезис научного естествознания
- 1.2.1. Перспективы античной преднауки
- 1.2.2. Замещение реальных объектов идеальными
- 1.2.3. Операции преобразования и моделирование изменений
- 1.3. Структура естественнонаучного познания
- 1.3.1. Принципы научного познания
- 1.3.2. Общие методы познания
- 1.3.3. Основные формы естествознания6
- 1.3.4. Непостижимая эффективность математики8
- Глава 2. Этапы развития естествознания
- 2.1. Ступени развития знания
- 2.1.1. «Естественная магия»
- 2.1.2. Магия и религия
- 2.1.3. Религия и естествознание
- 2.1.4. Специфика восточной преднауки
- 2.1.5. Письменность
- 2.2. Естественнонаучные аспекты античной натурфилософии
- 2.2.1. Евклидова геометрия - первая стандартная научная теория
- 2.2.2. Древнегреческий атомизм
- 2.2.3. Механика Архимеда16
- 2.2.4. Становление астрономии
- 2.3. Значение арабской системы знаний в истории естествознания21
- 2.3.1. Физические достижения арабского средневековья22
- 2.3.2. Астрономия арабо-мусульманского средневековья
- 2.4. Научные революции
- 2.4.1. Первая научная революция (xviIвек). Г. Галилей
- 2.4.2. Вторая научная революция (кон. XviiIв.- нач.XiXвека). И. Ньютон
- 2.4.3. Третья научная революция (кон. XiXв.- сер.XXвека)
- 2.4.4. Четвёртая научная революция (кон. XXвека)
- 2.5. Организация современного естествознания
- 2.5.1. Иерархия естественнонаучных законов
- 2.5.2. Этические принципы науки27
- 2.5.3. Роль междисциплинарных исследований в естествознании
- Глава 3. Фундаментальные Концепции естествознания
- 3.1. Термодинамика
- 3.1.1. Роль тепловых явлений в природе
- 3.1.2. Вещественная теория теплоты.
- 3.1.3. Корпускулярная теория теплоты
- 3.1.4. Законы термодинамики
- 3.2. Молекулярно-кинетическая теория (статистическая механика)
- 3.2.1. Основные положения молекулярно-кинетических представлений
- 3.2.2. Дискретность вещества
- Химия. Периодическая таблица химических элементов д. И. Менделеева32
- 3.2.4. Закон сохранения энергии
- 3.3. Электромагнитная теория
- 3.3.1. История открытия электричества
- 3.3.2. М. Фарадей: исследования электромагнетизма
- Заряд и поле. Закон сохранения электрического заряда
- Проводники, полупроводники и диэлектрики. Электрический ток
- Электромагнитное взаимодействие. Электромагнитная теория поля
- 3.4. Квантовая теория
- 3.4.1. Хронология становления квантовой теории
- 3.4.2. Гипотеза м. Планка. Кванты
- 3.4.3. Фотоэлектрический эффект и дискретная природа света
- 3.4.4. Квантовая теория атома н. Бора
- 3.4.5. Вероятностный характер процессов в микромире
- 3.4.6. Гипотеза Луи де Бройля об универсальности корпускулярно-волнового дуализма
- 3.4.7. Принцип неопределённости в. Гейзенберга
- 3.4.8. Волновая механика и уравнение э. Шредингера
- 3.4.9. Принцип дополнительности н. Бора
- 3.5. Симметрия
- 3.5.1. Симметрия и законы сохранения
- 3.5.2. Принципы, организующие сходство
- 3.5.3. Роль симметрии в организации мира
- Глава 4. Концепции движения, пространства и времени
- 4.1. Генезис представлений о пространстве и времени
- 4.1.1.Биологические предпосылки времени и виды пространства.
- 4.1.2. Пространство и время мифа и натурфилософии
- 4.1.3. Теоцентрическая модель пространства и времени
- 4.2. Классические концепции пространства и времени
- 4.2.1. Проблема континуальности и дискретности пространства и времени
- 4.2.2. Классические интерпретации пространства и времени
- 4.2.3. Проблемы реального пространства
- 4.3. Предпосылки неклассических интерпретаций пространства и времени
- 4.3.1. Принцип относительности и инерциальные системы (г. Галилей)
- Эфир как абсолютная система отсчёта. Опыт Майкельсона - Морли
- 4.3.3. Принцип относительности и электродинамика Максвелла
- 4.4. Специальная теория относительности (сто)
- 4.4.1. А. Эйнштейн. Единство пространства и времени. Связь массы и энергии38
- 4.4.3. Пространство и время в инерциальных системах
- 4.4.4. Неоднозначность геометрии физического пространства. Неевклидовы геометрии
- 4.5. Общая теория относительности (ото)
- 4.5.1. Инерция и гравитация
- 4.5.2. Теория гравитации
- 4.5.3. Гравитационные массы и искривление пространства - времени
- Глава 5. Хаос. Самоорганизация. Сложность
- 5.1. Хаос и порядок
- 5.1.1. Энтропия41
- 5.1.2. Принципы системности и целостности
- 5.1.3. Нелинейные системы. Рождение порядка
- 5.2. Самоорганизация
- 5.2.1. Синергетика
- 5.2.2 Механизм самоорганизации
- 5.2.3. Самоорганизация в диссипативных структурах
- 5.3. Необходимость и случайность
- 5.3.1. Проявление необходимости и случайности
- 5.3.2. Необходимость хаоса
- 5.3.3. Смысл информации
- 5.4. Сложность44
- 5.4.1. Понимание сложности. Неравновесное состояние систем
- 5.4.2. Сложное поведение и фазовое пространство45
- 5.4.3. Сложность поведения живых и социальных систем
- 5.4.4. Сложность адаптивных стратегий в живом мире
- 5.5. Управление
- 5.5.1. Кибернетика и теория управления
- 5.5.2. Информационная структура управления
- 5.5.3. Эффект обратной связи
- Глава 6. Жизнь
- 6.1. Проблема возникновения жизни
- 6.1.1. Специфика жизни как особого уровня организации материи
- 6.1.2. Гипотеза творения (креационизм)
- 6.1.3. Гипотеза спонтанного зарождения жизни
- 6.1.4. Гипотеза стационарного состояния
- 6.1.5. Гипотеза панспермии
- 6.1.6. Теория биохимической эволюции
- 6.2. Структура живого вещества
- 6.2.1. Признаки живого вещества
- 6.2.2. Виды регуляции организма
- 6.2.3. Постоянство внутренней среды (гомеостаз)
- 6.3. Теории эволюции
- 6.3.1. Зарождение эволюционного учения (ж. Ламарк, ж. Кювье, ч. Лайель)
- 6.3.2. Эволюционная теория естественного отбора (ч. Дарвин, а. Уоллес)52
- 6.3.3. Номогенез как альтернатива дарвинизму и как его дополнение
- 6.3.4. Вид и видообразование
- 6.3.5. Проблемы видообразования
- 6.4. Теория наследственности
- 6.4.1. Закон доминирования г. Менделя
- 6.4.2. Хромосомная теория наследственности
- 6.4.3. Структура гена. Расшифровка генетического кода
- 6.4.4. Днк, её роль в реализации наследственной информации
- 6.4.5. Клеточная теория (т. Шван, м Шлейден)
- 1.4.6. Биогенетический закон
- 6.5. Философское и естественнонаучное постижение смерти
- 6.5.1. Биологический и социальный смысл смерти
- 6.5.2. Что такое бессмертие?
- 6.5.3. Социальные следствия развития генной инженерии
- 6.5.4. Социальные и этические проблемы клонирования
- Глава 7. Биосфера
- 7.1. Генезис биосферы
- 7.1.1. Геологические условия возникновения биосферы
- 7.1.2. Эволюция биосферы. Живое вещество
- 7.1.3. Роль абиотических и биотических круговоротов
- Климатические первичные периодические
- 7.2. Биогеохимические процессы в биосфере
- 7.2.1. Состав вещества биосферы
- 7.2.2. Особенности основных биосферных циклов
- Биосферный цикл углерода
- Биосферный цикл азота
- Биосферный цикл фосфора
- 7.2.3. Биохимические функции живого вещества
- 7.2.4. Биогенная миграция атомов и биогеохимические принципы
- 7.3. Экологическая структура биосферы
- Биосфера - многокомпонентная иерархическая система
- Прокариоты и эукариоты. Бактерии. Вирусы и сине-зелёные водоросли
- 7.3.3. Растения. Грибы. Животные
- 7.4. Глобальное биологическое разнообразие и подходы к его изучению
- 7.4.1. Современные представления о видовом разнообразии биосферы74
- 7.4.2. Современные подходы к исследованию биоразнообразия75
- Популяционный подход
- Экосистемный подход
- 7.5. Ноосферогенез
- 7.5.1. В. И. Вернадский о переходе биосферы в ноосферу
- 7.5.2. Естественноисторические аспекты трансформации биосферы в ноосферу
- 7.5.3. Антропоцентризм и биосферное мышление
- Глава 8. Человек
- 8.1. Человек как вид
- 8.1.1. Человек: особый вид животных
- 8.1.2. Культурный и биологический аспекты эволюции человека
- 8.1.3. Нарушение основного биологического закона
- 8.2. Сознание и поведение
- 8.2.1. Функции головного мозга. Успехи нейрофизиологии
- 8.2.2. Поведение
- 8.2.3. Бихевиоризм
- 8.2.4. Гештальтпсихология
- 8.2.5. Этология и социобиология
- 8.3. Современное мировоззрение и планетарные проблемы
- 8.3.1. Проблема формирования современного мировоззрения
- 8.3.2. Глобальные последствия развития цивилизации
- 8.3.3. Деятельность «Римского клуба» и института л. Брауна «Worldwatch»
- 8.3.4. Новые ценности85
- 8.4. Концепция устойчивого развития
- 8.4.1. Экологическая и экономическая компоненты деятельности
- 8.4.2. Общие положения концепции устойчивого развития
- 8.4.3. Условия устойчивого развития и ключевые понятия концепции
- 8.5. Искусственный интеллект (ии)
- 8.5.1. Основные направления развития ии
- 8.5.2. Знания и их представление
- 8.5.3. Проблема понимания естественного языка
- Глава 9. Иерархия мироздания
- 9.1. Макромир
- 9.1.1. Основные этапы развития представлений о Вселенной
- 9.1.2. Релятивистская космология (а. Эйнштейн, а. А. Фридман)
- 9.1.3. Концепция расширяющейся Вселенной
- 9.1.4. Концепция «Большого Взрыва»
- 9.1.5. Антропный принцип90
- 9.2. Мезомир
- 9.2.1. Эволюция планеты Земля
- 9.2.2. Экологическая структура мезомира
- 9.2.3. Информационные свойства мезомира
- 9.3. Микромир
- 9.3.1. Учение об элементарных частицах
- 9.3.2. Элементарная структура вещества. Атом
- 9.3.3. Устойчивость и неустойчивость частиц. Термоядерные процессы. Ядро атома
- 9.3.4. Фундаментальные взаимодействия и законы природы92
- 9.3.5. Фундамент материи: физический вакуум и его состояния93
- 9.4. Виртуальные реальности
- 9.4.1.Значение термина «виртуальная реальность»
- 9.4.2. Компьютерная виртуальная реальность
- 9.4.3. Способы существования виртуальной реальности
- 9.4.4. О философии виртуальной реальности и киберпространства
- 9.5. Поиск внеземных цивилизаций
- 9.5.1. О возможности существования жизни и разума во Вселенной
- 9.5.2. О возможности информационного контакта с внеземными цивилизациями
- 9.5.3. О возможных формах технологической активности разума во Вселенной
- Летопись естественнонаучных открытий Период становления физики как науки
- Первый этап развития естествознания (кон. XviIв. – 60 годыXiXв.)
- Второй этап развития естествознания (60-е годы XIX в. - 1894 г.)
- Период современной физики
- Важнейшие открытия в биологии и медицине в хх веке
- Хронология клонирования
- Летопись открытий в химии
- Зарождение научной химии
- Утверждение в химии атомно-молекулярного учения
- Великие открытия в химии в хх веке
- Астрономия в хх веке
- Литература по главам Глава 1. Структура естествознания
- Глава 2. Этапы развития естествознания
- Глава 3. Фундаментальные концепции естествознания
- Глава 4. Концепции движения, пространства и времени
- Глава 5. Хаос. Самоорганизация. Сложность
- Глава 6. Жизнь
- Глава 7. Биосфера
- Глава 8. Человек
- Глава 9. Иерархия мироздания
- Литература дополнительная
- Словарь терминов
- Примечания
- 137 138