4.2.3. Проблемы реального пространства
В перечень наиболее фундаментальных физических свойств реального пространства следует включить трехмерность, однородность, изотропность. Оно способно играть роль пассивного вместилища для вещества и поля, не оказывающего сопротивления при инерционном движении объектов. Заметим, что с точки зрения современной физики все или почти все из перечисленных метрических свойств носят характер идеализаций: инерционное движение возможно лишь при отсутствии (или при полной компенсации) силовых взаимодействий, изотропность предполагает отсутствие гравитации, а однородность - отсутствие изменяющихся полей и конечных объектов.
Получается, что данный набор метрических свойств характеризует пространство «в чистом виде», то есть без существования вещества и поля. Если содержание понятия материи традиционно ограничивать двумя известными видами (веществом и полем), то указанные свойства физического пространства оказываются по отношению к материи внешними. Но такое пространство, оторванное от материи, должно стать голой абстракцией, - чем же в этом случае будут определяться его свойства?
«Внематериальное» пространство не должно обладать объективными свойствами, иначе их существование носило бы сверхъестественный характер. Мы в этом случае должны были бы отказаться от попыток обоснования объективности метрических свойств реального пространства. Может быть, действительно, следует заявить, что этих свойств в реальности нет? Но тогда на чем будет основана, например, наша уверенность в истинности законов сохранения, тесно связанных с изотропностью и однородностью пространства (и времени)? Универсальные законы сохранения не могут быть лишь следствиями усреднения воздействий со стороны хаотически распределенных во Вселенной вещества и поля, поскольку они нарушались бы на длинах и временах меньших, чем характерные масштабы осреднения. Вопрос тем самым сводится к дилемме: являются ли перечисленные свойства пространства объективными или они чисто иллюзорны?
Прежде всего, необходимо констатировать, что понятия пространства и времени являются философскими категориями и не определяются в естествознании. Для естественных наук важно уметь определять численные характеристики - расстояния между объектами и длительность процессов, а так же - описывать свойства, доступные экспериментальному изучению. Поэтому дальнейшее исследование этого вопроса будем основывать не на философском, а на естественнонаучном подходе.
Рассмотрим проблему измерения расстояний и как производную от неё проблему ограниченности Вселенной. Измерить расстояние между двумя объектами - значит сравнить его с эталонным образцом. До недавнего времени в качестве эталона использовалось тело, сделанное из твердого сплава, геометрическая форма которого слабо изменялась при изменении внешних условий. В качестве единицы длины был выбран метр, отрезок, сравнимый с характерными размерами человеческого тела. Очевидно, что в большинстве случаев эталон не укладывался целое число раз на длине измеряемого отрезка. Оставшаяся часть измерялась при помощи 1/10, 1/100 и т. д. эталона.
В принципе считалось, что такую процедуру можно продолжать до бесконечности, в результате чего получалось бы точное значение длины, выражаемое бесконечной десятичной дробью, т. е. вещественным числом. На практике многократное деление исходного эталона было невозможно. Для повышения точности измерения и измерения малых отрезков потребовался эталон существенно меньших размеров, в качестве которого по настоящее время используются стоячие электромагнитные волны оптического диапазона.
В природе существуют объекты, значительно меньшие длин волн оптического излучения (молекулы, атомы, элементарные частицы). При их измерениях помимо неудобства сравнения с эталоном больших размеров возникает более принципиальная проблема: объекты, размеры которых меньше длины волны электромагнитного излучения, перестают его отражать и, следовательно, оказываются невидимыми. Для оценки размеров таких мелких объектов свет заменяют потоком каких-либо элементарных частиц (электронов, нейтронов и т. д.). Величина объектов оценивается по так называемым сечениям рассеяния, определяемым отношением числа частиц, изменивших направления своего движения, к плотности падающего потока. Наименьшим расстоянием, известным в настоящее время, является характерный размер элементарной частицы. Говорить о меньших размерах, по-видимому, бессмысленно.
При измерении расстояний, значительно превышающих 1м, пользоваться эталоном длины вновь оказывается неудобно. Для измерения расстояний, сравнимых с размерами Земли, применяют методы триангуляции (определение большей стороны треугольника по точно измеренной меньшей стороне и двум углам) и радиолокации (измерение времени задержки отраженного сигнала, скорость распространения которого известна, относительно момента передачи). Для расстояний до удаленных звезд и соседних галактик указанные методы оказываются неприменимыми (отраженный радиосигнал оказывается слишком слабым, углы треугольника отличаются на слишком малую величину). На столь больших расстояниях наблюдаемыми оказываются только самосветящиеся объекты (звезды и галактики), расстояния до них оценивается исходя из наблюдаемой яркости.
Известно, насколько трудно представимы размеры наблюдаемой части Вселенной. Вопрос о том, имеют ли смысл большие расстояния, сводится к проблемам конечности и ограниченности Вселенной, до сих пор окончательно не решенным космологией. Со времен Ньютона считалось, что окружающий нас мир однороден и не может иметь границ (в противном случае возникал вопрос об их физической природе и о том, «что находится по другую сторону»). Однако, предположение о бесконечности Вселенной, совместно с естественным допущением о равномерном распределении звезд по объему и беспрепятственном распространении света в пространстве, приводил к заведомо абсурдному выводу о бесконечно ярком свечении ночного неба (так называемый парадокс ночного неба, или «парадокс Олберса»). Позднее пришло понимание того, что понятия бесконечности и неограниченности не эквивалентны друг другу (например, шар не имеет границ, но площадь его конечна).
Теперь обратимся к проблеме измерения интервалов времени и, соответственно к вопросу о возрасте Вселенной. Измерить длительность процесса - значит сравнить его с эталонным образцом. В качестве последнего удобно выбрать какой-либо периодически повторяющийся процесс (суточное вращение Земли, биение человеческого сердца, колебание маятника, движение электрона вокруг ядра атома). Долгое время в качестве эталонного процесса использовались колебания маятника. За единицу измерения времени выбрали секунду (интервал, примерно равный периоду сокращения сердечной мышцы человека).
Для измерения значительно более коротких времен возникла необходимость в новых эталонах. В их роли выступили колебания кристаллической решетки и движение электронов в атоме (атомные часы). Еще меньшие времена можно измерять, сравнивая их со временем прохождения света через заданный промежуток. По-видимому, наименьшим осмысленным интервалом является время прохождения света через минимально возможное расстояние.
При помощи маятниковых часов возможно измерение временных интервалов, значительно превосходящих 1сек. (человеческая жизнь длится около 100 лет), но и здесь возможности метода не беспредельны. Времена, сравнимые с возрастом Земли (около 5 млрд. лет) возможно оценивать лишь по полураспаду* атомов радиоактивных элементов. Максимальным промежутком времени, о котором имеет смысл говорить в нашем мире, по-видимому, является возраст Вселенной, оцениваемый периодом в 20 млрд. лет. Началом существования нашего мира принято считать «Большой взрыв», произошедший в весьма малой области пространства, в результате которого возник наблюдаемый сейчас мир. События, произошедшие до «Большого взрыва» никак не влияют на настоящее и, следовательно, могут не рассматриваться.
В классическом естествознании, занимающимся главным образом описанием макроскопических (сравнимых с размерами человеческого тела) объектов, предполагается, что процедура измерения основных пространственно-временных характеристик (расстояний и длительностей) в принципе может быть выполнена сколь угодно точно и при этом может практически не влиять на измеряемый объект и происходящие с ним процессы.
- Министерство образования российской федерации
- Оглавление
- Предисловие
- Введение
- Методические рекомендации
- Глава 1. Структура естествознания
- 1.1. Предмет естествознания
- 1.1.1. Анализ понятия «природа»
- 1.1.2. Естествознание донаучное, преднаучное и научное
- 1.1.3. Неисчерпаемость предмета естествознания
- 1.1.4. Специфика донаучного и преднаучного естествознания
- 1.1.5. Специфика научного естествознания
- 1.2. Генезис научного естествознания
- 1.2.1. Перспективы античной преднауки
- 1.2.2. Замещение реальных объектов идеальными
- 1.2.3. Операции преобразования и моделирование изменений
- 1.3. Структура естественнонаучного познания
- 1.3.1. Принципы научного познания
- 1.3.2. Общие методы познания
- 1.3.3. Основные формы естествознания6
- 1.3.4. Непостижимая эффективность математики8
- Глава 2. Этапы развития естествознания
- 2.1. Ступени развития знания
- 2.1.1. «Естественная магия»
- 2.1.2. Магия и религия
- 2.1.3. Религия и естествознание
- 2.1.4. Специфика восточной преднауки
- 2.1.5. Письменность
- 2.2. Естественнонаучные аспекты античной натурфилософии
- 2.2.1. Евклидова геометрия - первая стандартная научная теория
- 2.2.2. Древнегреческий атомизм
- 2.2.3. Механика Архимеда16
- 2.2.4. Становление астрономии
- 2.3. Значение арабской системы знаний в истории естествознания21
- 2.3.1. Физические достижения арабского средневековья22
- 2.3.2. Астрономия арабо-мусульманского средневековья
- 2.4. Научные революции
- 2.4.1. Первая научная революция (xviIвек). Г. Галилей
- 2.4.2. Вторая научная революция (кон. XviiIв.- нач.XiXвека). И. Ньютон
- 2.4.3. Третья научная революция (кон. XiXв.- сер.XXвека)
- 2.4.4. Четвёртая научная революция (кон. XXвека)
- 2.5. Организация современного естествознания
- 2.5.1. Иерархия естественнонаучных законов
- 2.5.2. Этические принципы науки27
- 2.5.3. Роль междисциплинарных исследований в естествознании
- Глава 3. Фундаментальные Концепции естествознания
- 3.1. Термодинамика
- 3.1.1. Роль тепловых явлений в природе
- 3.1.2. Вещественная теория теплоты.
- 3.1.3. Корпускулярная теория теплоты
- 3.1.4. Законы термодинамики
- 3.2. Молекулярно-кинетическая теория (статистическая механика)
- 3.2.1. Основные положения молекулярно-кинетических представлений
- 3.2.2. Дискретность вещества
- Химия. Периодическая таблица химических элементов д. И. Менделеева32
- 3.2.4. Закон сохранения энергии
- 3.3. Электромагнитная теория
- 3.3.1. История открытия электричества
- 3.3.2. М. Фарадей: исследования электромагнетизма
- Заряд и поле. Закон сохранения электрического заряда
- Проводники, полупроводники и диэлектрики. Электрический ток
- Электромагнитное взаимодействие. Электромагнитная теория поля
- 3.4. Квантовая теория
- 3.4.1. Хронология становления квантовой теории
- 3.4.2. Гипотеза м. Планка. Кванты
- 3.4.3. Фотоэлектрический эффект и дискретная природа света
- 3.4.4. Квантовая теория атома н. Бора
- 3.4.5. Вероятностный характер процессов в микромире
- 3.4.6. Гипотеза Луи де Бройля об универсальности корпускулярно-волнового дуализма
- 3.4.7. Принцип неопределённости в. Гейзенберга
- 3.4.8. Волновая механика и уравнение э. Шредингера
- 3.4.9. Принцип дополнительности н. Бора
- 3.5. Симметрия
- 3.5.1. Симметрия и законы сохранения
- 3.5.2. Принципы, организующие сходство
- 3.5.3. Роль симметрии в организации мира
- Глава 4. Концепции движения, пространства и времени
- 4.1. Генезис представлений о пространстве и времени
- 4.1.1.Биологические предпосылки времени и виды пространства.
- 4.1.2. Пространство и время мифа и натурфилософии
- 4.1.3. Теоцентрическая модель пространства и времени
- 4.2. Классические концепции пространства и времени
- 4.2.1. Проблема континуальности и дискретности пространства и времени
- 4.2.2. Классические интерпретации пространства и времени
- 4.2.3. Проблемы реального пространства
- 4.3. Предпосылки неклассических интерпретаций пространства и времени
- 4.3.1. Принцип относительности и инерциальные системы (г. Галилей)
- Эфир как абсолютная система отсчёта. Опыт Майкельсона - Морли
- 4.3.3. Принцип относительности и электродинамика Максвелла
- 4.4. Специальная теория относительности (сто)
- 4.4.1. А. Эйнштейн. Единство пространства и времени. Связь массы и энергии38
- 4.4.3. Пространство и время в инерциальных системах
- 4.4.4. Неоднозначность геометрии физического пространства. Неевклидовы геометрии
- 4.5. Общая теория относительности (ото)
- 4.5.1. Инерция и гравитация
- 4.5.2. Теория гравитации
- 4.5.3. Гравитационные массы и искривление пространства - времени
- Глава 5. Хаос. Самоорганизация. Сложность
- 5.1. Хаос и порядок
- 5.1.1. Энтропия41
- 5.1.2. Принципы системности и целостности
- 5.1.3. Нелинейные системы. Рождение порядка
- 5.2. Самоорганизация
- 5.2.1. Синергетика
- 5.2.2 Механизм самоорганизации
- 5.2.3. Самоорганизация в диссипативных структурах
- 5.3. Необходимость и случайность
- 5.3.1. Проявление необходимости и случайности
- 5.3.2. Необходимость хаоса
- 5.3.3. Смысл информации
- 5.4. Сложность44
- 5.4.1. Понимание сложности. Неравновесное состояние систем
- 5.4.2. Сложное поведение и фазовое пространство45
- 5.4.3. Сложность поведения живых и социальных систем
- 5.4.4. Сложность адаптивных стратегий в живом мире
- 5.5. Управление
- 5.5.1. Кибернетика и теория управления
- 5.5.2. Информационная структура управления
- 5.5.3. Эффект обратной связи
- Глава 6. Жизнь
- 6.1. Проблема возникновения жизни
- 6.1.1. Специфика жизни как особого уровня организации материи
- 6.1.2. Гипотеза творения (креационизм)
- 6.1.3. Гипотеза спонтанного зарождения жизни
- 6.1.4. Гипотеза стационарного состояния
- 6.1.5. Гипотеза панспермии
- 6.1.6. Теория биохимической эволюции
- 6.2. Структура живого вещества
- 6.2.1. Признаки живого вещества
- 6.2.2. Виды регуляции организма
- 6.2.3. Постоянство внутренней среды (гомеостаз)
- 6.3. Теории эволюции
- 6.3.1. Зарождение эволюционного учения (ж. Ламарк, ж. Кювье, ч. Лайель)
- 6.3.2. Эволюционная теория естественного отбора (ч. Дарвин, а. Уоллес)52
- 6.3.3. Номогенез как альтернатива дарвинизму и как его дополнение
- 6.3.4. Вид и видообразование
- 6.3.5. Проблемы видообразования
- 6.4. Теория наследственности
- 6.4.1. Закон доминирования г. Менделя
- 6.4.2. Хромосомная теория наследственности
- 6.4.3. Структура гена. Расшифровка генетического кода
- 6.4.4. Днк, её роль в реализации наследственной информации
- 6.4.5. Клеточная теория (т. Шван, м Шлейден)
- 1.4.6. Биогенетический закон
- 6.5. Философское и естественнонаучное постижение смерти
- 6.5.1. Биологический и социальный смысл смерти
- 6.5.2. Что такое бессмертие?
- 6.5.3. Социальные следствия развития генной инженерии
- 6.5.4. Социальные и этические проблемы клонирования
- Глава 7. Биосфера
- 7.1. Генезис биосферы
- 7.1.1. Геологические условия возникновения биосферы
- 7.1.2. Эволюция биосферы. Живое вещество
- 7.1.3. Роль абиотических и биотических круговоротов
- Климатические первичные периодические
- 7.2. Биогеохимические процессы в биосфере
- 7.2.1. Состав вещества биосферы
- 7.2.2. Особенности основных биосферных циклов
- Биосферный цикл углерода
- Биосферный цикл азота
- Биосферный цикл фосфора
- 7.2.3. Биохимические функции живого вещества
- 7.2.4. Биогенная миграция атомов и биогеохимические принципы
- 7.3. Экологическая структура биосферы
- Биосфера - многокомпонентная иерархическая система
- Прокариоты и эукариоты. Бактерии. Вирусы и сине-зелёные водоросли
- 7.3.3. Растения. Грибы. Животные
- 7.4. Глобальное биологическое разнообразие и подходы к его изучению
- 7.4.1. Современные представления о видовом разнообразии биосферы74
- 7.4.2. Современные подходы к исследованию биоразнообразия75
- Популяционный подход
- Экосистемный подход
- 7.5. Ноосферогенез
- 7.5.1. В. И. Вернадский о переходе биосферы в ноосферу
- 7.5.2. Естественноисторические аспекты трансформации биосферы в ноосферу
- 7.5.3. Антропоцентризм и биосферное мышление
- Глава 8. Человек
- 8.1. Человек как вид
- 8.1.1. Человек: особый вид животных
- 8.1.2. Культурный и биологический аспекты эволюции человека
- 8.1.3. Нарушение основного биологического закона
- 8.2. Сознание и поведение
- 8.2.1. Функции головного мозга. Успехи нейрофизиологии
- 8.2.2. Поведение
- 8.2.3. Бихевиоризм
- 8.2.4. Гештальтпсихология
- 8.2.5. Этология и социобиология
- 8.3. Современное мировоззрение и планетарные проблемы
- 8.3.1. Проблема формирования современного мировоззрения
- 8.3.2. Глобальные последствия развития цивилизации
- 8.3.3. Деятельность «Римского клуба» и института л. Брауна «Worldwatch»
- 8.3.4. Новые ценности85
- 8.4. Концепция устойчивого развития
- 8.4.1. Экологическая и экономическая компоненты деятельности
- 8.4.2. Общие положения концепции устойчивого развития
- 8.4.3. Условия устойчивого развития и ключевые понятия концепции
- 8.5. Искусственный интеллект (ии)
- 8.5.1. Основные направления развития ии
- 8.5.2. Знания и их представление
- 8.5.3. Проблема понимания естественного языка
- Глава 9. Иерархия мироздания
- 9.1. Макромир
- 9.1.1. Основные этапы развития представлений о Вселенной
- 9.1.2. Релятивистская космология (а. Эйнштейн, а. А. Фридман)
- 9.1.3. Концепция расширяющейся Вселенной
- 9.1.4. Концепция «Большого Взрыва»
- 9.1.5. Антропный принцип90
- 9.2. Мезомир
- 9.2.1. Эволюция планеты Земля
- 9.2.2. Экологическая структура мезомира
- 9.2.3. Информационные свойства мезомира
- 9.3. Микромир
- 9.3.1. Учение об элементарных частицах
- 9.3.2. Элементарная структура вещества. Атом
- 9.3.3. Устойчивость и неустойчивость частиц. Термоядерные процессы. Ядро атома
- 9.3.4. Фундаментальные взаимодействия и законы природы92
- 9.3.5. Фундамент материи: физический вакуум и его состояния93
- 9.4. Виртуальные реальности
- 9.4.1.Значение термина «виртуальная реальность»
- 9.4.2. Компьютерная виртуальная реальность
- 9.4.3. Способы существования виртуальной реальности
- 9.4.4. О философии виртуальной реальности и киберпространства
- 9.5. Поиск внеземных цивилизаций
- 9.5.1. О возможности существования жизни и разума во Вселенной
- 9.5.2. О возможности информационного контакта с внеземными цивилизациями
- 9.5.3. О возможных формах технологической активности разума во Вселенной
- Летопись естественнонаучных открытий Период становления физики как науки
- Первый этап развития естествознания (кон. XviIв. – 60 годыXiXв.)
- Второй этап развития естествознания (60-е годы XIX в. - 1894 г.)
- Период современной физики
- Важнейшие открытия в биологии и медицине в хх веке
- Хронология клонирования
- Летопись открытий в химии
- Зарождение научной химии
- Утверждение в химии атомно-молекулярного учения
- Великие открытия в химии в хх веке
- Астрономия в хх веке
- Литература по главам Глава 1. Структура естествознания
- Глава 2. Этапы развития естествознания
- Глава 3. Фундаментальные концепции естествознания
- Глава 4. Концепции движения, пространства и времени
- Глава 5. Хаос. Самоорганизация. Сложность
- Глава 6. Жизнь
- Глава 7. Биосфера
- Глава 8. Человек
- Глава 9. Иерархия мироздания
- Литература дополнительная
- Словарь терминов
- Примечания
- 137 138