Биосферный цикл фосфора
В то время как резервуаром азота является воздух, резервуар фосфора - это горные породы, из которых он высвобождается при эрозии. Большая часть фосфора при этом снова теряется, так как вода смывает его в море, где он связан в морских осадках и может стать доступным только тогда, когда здесь произойдёт поднятие земной коры. В мелководных морских осадках фосфор доступен для рыб, которых в свою очередь поедают птицы. Они возвращают фосфор в круговорот со своими экскрементами (гуано), снова смываемыми в море, где их используют планктонные организмы и рыбы. Есть основания полагать, что фосфор возвращается в круговорот не полностью и что доступные ресурсы его, в конце концов, иссякнут. Истощению этих ресурсов способствует человек, который добывает и, в конечном счете, безвозвратно теряет больше фосфора, чем возвращает в оборот.
Фосфор является одним из важнейших биогенов. Он входит в состав генов и молекул, переносящих энергию внутри клеток. Цикл фосфора - пример простого осадочного цикла с весьма несовершенной регуляцией. Особенностью цикла фосфора является отсутствие естественных токсичных его соединений. Главным резервуаром фосфора служат горные породы. В различных минералах фосфор содержится в виде неорганического фосфат-иона. Фосфаты растворимы в кислых растворах и в бескислородных средах, нелетучи. Растения поглощают фосфат-ионы из водного раствора и включают в состав различных органических соединений. В них фосфор выступает в форме органического фосфата. Особенностью этих соединений является наличие связи Р-О-Р. При их гидролизе освобождается большое количество энергии.
Например, при гидролизе подобной молекулы - пирофосфата выделяется 29 кДж/моль, что значительно больше, чем, если бы гидролизу подверглась любая другая молекула, не содержащая Р-О-Р - связей. По пищевым цепям фосфор поступает от растений ко всем прочим организмам экосистемы. При каждом переходе возможно окисление или гидролиз соединений фосфора для получения организмом энергии. Продукты окисления и гидролиза (фосфаты) поступают в окружающую среду, после чего могут снова поглощаться растениями.
Особенность круговорота фосфора можно рассмотреть при сравнении с круговоротом углерода. Значительная часть фонда углерода находится в газообразной фазе, и он способен свободно распространяться в атмосфере. В случае фосфора газовой фазы и свободного перераспределения в экосистеме нет. Попадая в закрытые водоемы, фосфор насыщает и пересыщает систему. Фосфор и другие минеральные биогены циркулируют в системе в том случае, если содержащие их отходы жизнедеятельности откладываются в местах поглощения данного элемента. В естественных экосистемах подобное равновесие соблюдается. Это касается и чисто минеральной формы фосфора.
Деятельность человека приводит к нарушению естественного цикла фосфора. Она характеризуется разделением мест потребления и утилизации биогена, в частности, фосфора. Урожай, вместе с извлеченными из почвы биогенами, различные продукты питания, перевозятся на большие расстояния к потребителям. Продукты жизнедеятельности человека, содержащие фосфор, сбрасываются в водоемы и, пересыщая их этим биогеном, вызывают эвтрофикацию. Важнейшим источником накопления фосфора в окружающей среде являются фосфатсодержащие детергенты. Подсчитано, что человеческие экскременты дают только 30% фосфата сточных вод, а 60% поступают в них с детергентами.
- Министерство образования российской федерации
- Оглавление
- Предисловие
- Введение
- Методические рекомендации
- Глава 1. Структура естествознания
- 1.1. Предмет естествознания
- 1.1.1. Анализ понятия «природа»
- 1.1.2. Естествознание донаучное, преднаучное и научное
- 1.1.3. Неисчерпаемость предмета естествознания
- 1.1.4. Специфика донаучного и преднаучного естествознания
- 1.1.5. Специфика научного естествознания
- 1.2. Генезис научного естествознания
- 1.2.1. Перспективы античной преднауки
- 1.2.2. Замещение реальных объектов идеальными
- 1.2.3. Операции преобразования и моделирование изменений
- 1.3. Структура естественнонаучного познания
- 1.3.1. Принципы научного познания
- 1.3.2. Общие методы познания
- 1.3.3. Основные формы естествознания6
- 1.3.4. Непостижимая эффективность математики8
- Глава 2. Этапы развития естествознания
- 2.1. Ступени развития знания
- 2.1.1. «Естественная магия»
- 2.1.2. Магия и религия
- 2.1.3. Религия и естествознание
- 2.1.4. Специфика восточной преднауки
- 2.1.5. Письменность
- 2.2. Естественнонаучные аспекты античной натурфилософии
- 2.2.1. Евклидова геометрия - первая стандартная научная теория
- 2.2.2. Древнегреческий атомизм
- 2.2.3. Механика Архимеда16
- 2.2.4. Становление астрономии
- 2.3. Значение арабской системы знаний в истории естествознания21
- 2.3.1. Физические достижения арабского средневековья22
- 2.3.2. Астрономия арабо-мусульманского средневековья
- 2.4. Научные революции
- 2.4.1. Первая научная революция (xviIвек). Г. Галилей
- 2.4.2. Вторая научная революция (кон. XviiIв.- нач.XiXвека). И. Ньютон
- 2.4.3. Третья научная революция (кон. XiXв.- сер.XXвека)
- 2.4.4. Четвёртая научная революция (кон. XXвека)
- 2.5. Организация современного естествознания
- 2.5.1. Иерархия естественнонаучных законов
- 2.5.2. Этические принципы науки27
- 2.5.3. Роль междисциплинарных исследований в естествознании
- Глава 3. Фундаментальные Концепции естествознания
- 3.1. Термодинамика
- 3.1.1. Роль тепловых явлений в природе
- 3.1.2. Вещественная теория теплоты.
- 3.1.3. Корпускулярная теория теплоты
- 3.1.4. Законы термодинамики
- 3.2. Молекулярно-кинетическая теория (статистическая механика)
- 3.2.1. Основные положения молекулярно-кинетических представлений
- 3.2.2. Дискретность вещества
- Химия. Периодическая таблица химических элементов д. И. Менделеева32
- 3.2.4. Закон сохранения энергии
- 3.3. Электромагнитная теория
- 3.3.1. История открытия электричества
- 3.3.2. М. Фарадей: исследования электромагнетизма
- Заряд и поле. Закон сохранения электрического заряда
- Проводники, полупроводники и диэлектрики. Электрический ток
- Электромагнитное взаимодействие. Электромагнитная теория поля
- 3.4. Квантовая теория
- 3.4.1. Хронология становления квантовой теории
- 3.4.2. Гипотеза м. Планка. Кванты
- 3.4.3. Фотоэлектрический эффект и дискретная природа света
- 3.4.4. Квантовая теория атома н. Бора
- 3.4.5. Вероятностный характер процессов в микромире
- 3.4.6. Гипотеза Луи де Бройля об универсальности корпускулярно-волнового дуализма
- 3.4.7. Принцип неопределённости в. Гейзенберга
- 3.4.8. Волновая механика и уравнение э. Шредингера
- 3.4.9. Принцип дополнительности н. Бора
- 3.5. Симметрия
- 3.5.1. Симметрия и законы сохранения
- 3.5.2. Принципы, организующие сходство
- 3.5.3. Роль симметрии в организации мира
- Глава 4. Концепции движения, пространства и времени
- 4.1. Генезис представлений о пространстве и времени
- 4.1.1.Биологические предпосылки времени и виды пространства.
- 4.1.2. Пространство и время мифа и натурфилософии
- 4.1.3. Теоцентрическая модель пространства и времени
- 4.2. Классические концепции пространства и времени
- 4.2.1. Проблема континуальности и дискретности пространства и времени
- 4.2.2. Классические интерпретации пространства и времени
- 4.2.3. Проблемы реального пространства
- 4.3. Предпосылки неклассических интерпретаций пространства и времени
- 4.3.1. Принцип относительности и инерциальные системы (г. Галилей)
- Эфир как абсолютная система отсчёта. Опыт Майкельсона - Морли
- 4.3.3. Принцип относительности и электродинамика Максвелла
- 4.4. Специальная теория относительности (сто)
- 4.4.1. А. Эйнштейн. Единство пространства и времени. Связь массы и энергии38
- 4.4.3. Пространство и время в инерциальных системах
- 4.4.4. Неоднозначность геометрии физического пространства. Неевклидовы геометрии
- 4.5. Общая теория относительности (ото)
- 4.5.1. Инерция и гравитация
- 4.5.2. Теория гравитации
- 4.5.3. Гравитационные массы и искривление пространства - времени
- Глава 5. Хаос. Самоорганизация. Сложность
- 5.1. Хаос и порядок
- 5.1.1. Энтропия41
- 5.1.2. Принципы системности и целостности
- 5.1.3. Нелинейные системы. Рождение порядка
- 5.2. Самоорганизация
- 5.2.1. Синергетика
- 5.2.2 Механизм самоорганизации
- 5.2.3. Самоорганизация в диссипативных структурах
- 5.3. Необходимость и случайность
- 5.3.1. Проявление необходимости и случайности
- 5.3.2. Необходимость хаоса
- 5.3.3. Смысл информации
- 5.4. Сложность44
- 5.4.1. Понимание сложности. Неравновесное состояние систем
- 5.4.2. Сложное поведение и фазовое пространство45
- 5.4.3. Сложность поведения живых и социальных систем
- 5.4.4. Сложность адаптивных стратегий в живом мире
- 5.5. Управление
- 5.5.1. Кибернетика и теория управления
- 5.5.2. Информационная структура управления
- 5.5.3. Эффект обратной связи
- Глава 6. Жизнь
- 6.1. Проблема возникновения жизни
- 6.1.1. Специфика жизни как особого уровня организации материи
- 6.1.2. Гипотеза творения (креационизм)
- 6.1.3. Гипотеза спонтанного зарождения жизни
- 6.1.4. Гипотеза стационарного состояния
- 6.1.5. Гипотеза панспермии
- 6.1.6. Теория биохимической эволюции
- 6.2. Структура живого вещества
- 6.2.1. Признаки живого вещества
- 6.2.2. Виды регуляции организма
- 6.2.3. Постоянство внутренней среды (гомеостаз)
- 6.3. Теории эволюции
- 6.3.1. Зарождение эволюционного учения (ж. Ламарк, ж. Кювье, ч. Лайель)
- 6.3.2. Эволюционная теория естественного отбора (ч. Дарвин, а. Уоллес)52
- 6.3.3. Номогенез как альтернатива дарвинизму и как его дополнение
- 6.3.4. Вид и видообразование
- 6.3.5. Проблемы видообразования
- 6.4. Теория наследственности
- 6.4.1. Закон доминирования г. Менделя
- 6.4.2. Хромосомная теория наследственности
- 6.4.3. Структура гена. Расшифровка генетического кода
- 6.4.4. Днк, её роль в реализации наследственной информации
- 6.4.5. Клеточная теория (т. Шван, м Шлейден)
- 1.4.6. Биогенетический закон
- 6.5. Философское и естественнонаучное постижение смерти
- 6.5.1. Биологический и социальный смысл смерти
- 6.5.2. Что такое бессмертие?
- 6.5.3. Социальные следствия развития генной инженерии
- 6.5.4. Социальные и этические проблемы клонирования
- Глава 7. Биосфера
- 7.1. Генезис биосферы
- 7.1.1. Геологические условия возникновения биосферы
- 7.1.2. Эволюция биосферы. Живое вещество
- 7.1.3. Роль абиотических и биотических круговоротов
- Климатические первичные периодические
- 7.2. Биогеохимические процессы в биосфере
- 7.2.1. Состав вещества биосферы
- 7.2.2. Особенности основных биосферных циклов
- Биосферный цикл углерода
- Биосферный цикл азота
- Биосферный цикл фосфора
- 7.2.3. Биохимические функции живого вещества
- 7.2.4. Биогенная миграция атомов и биогеохимические принципы
- 7.3. Экологическая структура биосферы
- Биосфера - многокомпонентная иерархическая система
- Прокариоты и эукариоты. Бактерии. Вирусы и сине-зелёные водоросли
- 7.3.3. Растения. Грибы. Животные
- 7.4. Глобальное биологическое разнообразие и подходы к его изучению
- 7.4.1. Современные представления о видовом разнообразии биосферы74
- 7.4.2. Современные подходы к исследованию биоразнообразия75
- Популяционный подход
- Экосистемный подход
- 7.5. Ноосферогенез
- 7.5.1. В. И. Вернадский о переходе биосферы в ноосферу
- 7.5.2. Естественноисторические аспекты трансформации биосферы в ноосферу
- 7.5.3. Антропоцентризм и биосферное мышление
- Глава 8. Человек
- 8.1. Человек как вид
- 8.1.1. Человек: особый вид животных
- 8.1.2. Культурный и биологический аспекты эволюции человека
- 8.1.3. Нарушение основного биологического закона
- 8.2. Сознание и поведение
- 8.2.1. Функции головного мозга. Успехи нейрофизиологии
- 8.2.2. Поведение
- 8.2.3. Бихевиоризм
- 8.2.4. Гештальтпсихология
- 8.2.5. Этология и социобиология
- 8.3. Современное мировоззрение и планетарные проблемы
- 8.3.1. Проблема формирования современного мировоззрения
- 8.3.2. Глобальные последствия развития цивилизации
- 8.3.3. Деятельность «Римского клуба» и института л. Брауна «Worldwatch»
- 8.3.4. Новые ценности85
- 8.4. Концепция устойчивого развития
- 8.4.1. Экологическая и экономическая компоненты деятельности
- 8.4.2. Общие положения концепции устойчивого развития
- 8.4.3. Условия устойчивого развития и ключевые понятия концепции
- 8.5. Искусственный интеллект (ии)
- 8.5.1. Основные направления развития ии
- 8.5.2. Знания и их представление
- 8.5.3. Проблема понимания естественного языка
- Глава 9. Иерархия мироздания
- 9.1. Макромир
- 9.1.1. Основные этапы развития представлений о Вселенной
- 9.1.2. Релятивистская космология (а. Эйнштейн, а. А. Фридман)
- 9.1.3. Концепция расширяющейся Вселенной
- 9.1.4. Концепция «Большого Взрыва»
- 9.1.5. Антропный принцип90
- 9.2. Мезомир
- 9.2.1. Эволюция планеты Земля
- 9.2.2. Экологическая структура мезомира
- 9.2.3. Информационные свойства мезомира
- 9.3. Микромир
- 9.3.1. Учение об элементарных частицах
- 9.3.2. Элементарная структура вещества. Атом
- 9.3.3. Устойчивость и неустойчивость частиц. Термоядерные процессы. Ядро атома
- 9.3.4. Фундаментальные взаимодействия и законы природы92
- 9.3.5. Фундамент материи: физический вакуум и его состояния93
- 9.4. Виртуальные реальности
- 9.4.1.Значение термина «виртуальная реальность»
- 9.4.2. Компьютерная виртуальная реальность
- 9.4.3. Способы существования виртуальной реальности
- 9.4.4. О философии виртуальной реальности и киберпространства
- 9.5. Поиск внеземных цивилизаций
- 9.5.1. О возможности существования жизни и разума во Вселенной
- 9.5.2. О возможности информационного контакта с внеземными цивилизациями
- 9.5.3. О возможных формах технологической активности разума во Вселенной
- Летопись естественнонаучных открытий Период становления физики как науки
- Первый этап развития естествознания (кон. XviIв. – 60 годыXiXв.)
- Второй этап развития естествознания (60-е годы XIX в. - 1894 г.)
- Период современной физики
- Важнейшие открытия в биологии и медицине в хх веке
- Хронология клонирования
- Летопись открытий в химии
- Зарождение научной химии
- Утверждение в химии атомно-молекулярного учения
- Великие открытия в химии в хх веке
- Астрономия в хх веке
- Литература по главам Глава 1. Структура естествознания
- Глава 2. Этапы развития естествознания
- Глава 3. Фундаментальные концепции естествознания
- Глава 4. Концепции движения, пространства и времени
- Глава 5. Хаос. Самоорганизация. Сложность
- Глава 6. Жизнь
- Глава 7. Биосфера
- Глава 8. Человек
- Глава 9. Иерархия мироздания
- Литература дополнительная
- Словарь терминов
- Примечания
- 137 138