4.3.3. Принцип относительности и электродинамика Максвелла
Итак, к концу XIX века принцип относительности считался твердо установленным для всех механических процессов, но распространение действия этого принципа на процессы электродинамические встретило определенные затруднения.
В классической механике имеет место общеизвестный закон сложения скоростей, согласно которому скорость сложного движения равна сумме (векторной) скоростей, составляющих это движение. Электромагнитная природа света была уже установлена, поэтому оправдано было ожидание, что скорость света будет различна в различных инерциальных системах отсчета. Однако, измерения, произведенные впервые А. Майкельсоном в 1881 году, обнаружили полную независимость скорости света от направления его распространения по отношению к наблюдателю. Последующие проверки носили скорее уточняющий характер величины скорости света, но не изменили вывод А. Майкельсона: скорость света в вакууме постоянна и не зависит от скорости движения источника света или наблюдателя, что, несомненно, означало, с одной стороны, экспериментальное обнаружение фундаментального свойства природы, с другой - неприменимость галилеевого принципа относительности к электродинамическим процессам.
Само собой, разумеется, было сделано немало попыток согласовать отрицательный результат опыта Майкельсона с существующими теориями. В частности, Фицджеральд и Лоренц, как говорилось выше, выдвинули гипотезу о сокращении материальных тел при их движении относительно эфира. Это сокращение, не меняя поперечных размеров, должно приводить к сокращению линейных размеров тел в направлении их движения относительно эфира и, таким образом, точно компенсировать влияние относительного движения на скорость распространения света. Но эта остроумная гипотеза носила, очевидно, весьма искусственный характер и, казалось, была выдвинута с единственной целью, скрыть неудачу. И, как известно, лишь Альберт Эйнштейн нашел истинное решение этого вопроса.
Становление теории относительности началось с изучения некоторых вопросов, связанных с оптическими явлениями, происходящими в движущихся средах. Распространённое представление о свете предполагало существование эфира, заполняющего всю Вселенную и проникающего во все тела. Такой эфир играл роль среды, в которой распространялись световые волны. Электромагнитная теория Максвелла несколько ослабила значение роли эфира, так как эта теория не требует, чтобы световые колебания были колебаниями какой-либо среды. В теории Максвелла световые колебания полностью определяются заданием векторов электромагнитного поля.
После того как все попытки механической интерпретации законов электродинамики потерпели неудачу, поля в максвелловой теории, в конце концов, стали рассматривать, как исходные понятия, которые бесполезно пытаться перевести на язык механики. С этого момента исчезла какая бы то ни была необходимость предполагать существование упругой среды, передающей электромагнитные колебания, и можно было подумать, что понятие эфира становится бесполезным. В действительности же это было не совсем так, и последователи Максвелла, в частности Лоренц, вынуждены были снова поднять вопрос об эфире.
В чем же было дело? Почему пришлось продолжить разговор об эфире? Потому, что уравнения электродинамики Максвелла не удовлетворяли принципу относительности классической механики. Иными словами, будучи справедливыми в какой-либо одной системе координат, они становились неверными в другой системе координат, движущейся прямолинейно и равномерно относительно первой. По крайней мере, если допустить (что представлялось тогда само собой разумеющимся), что при переходе от одной системы к другой координаты заменяются так, как это обычно делается в аналогичных случаях в классической механике.
Действительно, классическая механика исходит из существования некоего абсолютного времени, единого для всех наблюдателей и для всех систем отсчета. В ней предполагается также, что расстояние между двумя точками пространства является инвариантом, то есть должно иметь одно и то же значение во всех системах координат, которые можно использовать для определения положения точек в пространстве. Из этих двух принципов, которые казались вполне естественными, непосредственно следовали простые классические формулы преобразования координат при переходе от одной системы отсчета к другой, которая движется относительно первой прямолинейно и равномерно. Эти формулы определяют так называемое «преобразование Галилея». Одним из основных положений классической механики является требование, чтобы все ее уравнения были инвариантны относительно преобразования Галилея. И действительно, пользуясь формулами преобразования Галилея, легко убедиться, что если уравнения Ньютона справедливы в системе координат, связанной с неподвижными звездами, то они будут справедливы также и во всех других системах отсчета, движущихся прямолинейно и равномерно относительно этих неподвижных звезд.
Напротив, уравнения Максвелла и Лоренца, существенно отличающиеся по своей форме от уравнений классической механики, не инвариантны относительно преобразования Галилея. Следовательно, если уравнения Максвелла справедливы в какой-либо одной системе координат, то они становятся несправедливыми при переходе к другой, движущейся относительно первой прямолинейно и равномерно. Дело обстоит так, как если бы существовала некая среда, заполняющая всю Вселенную, такая, что уравнения Максвелла справедливы только в одной, связанной с этой средой системе отсчета. Именно с этой средой отсчета ассоциировали последователи Максвелла понятие эфира. Эфир не был для них уже упругой средой с особыми свойствами, способной передавать световые колебания. Он стал абстрактной, весьма условной средой, служащей лишь для фиксации систем отсчета, в которых справедливы уравнения электродинамики Максвелла. Действительно, согласно теории Максвелла - Лоренца, для наблюдателя, движущегося относительно эфира, световые явления должны были бы протекать иначе, чем неподвижного наблюдателя. Следовательно, изучение этих явлений в движущейся системе координат должно было позволить определить скорость этой системы координат относительно эфира, который таким образом приобретает уже некоторое более конкретное содержание.
Таким образом, с помощью нескольких, проведенных последовательно друг за другом экспериментов, можно было бы весьма точно определить скорость Земли относительно эфира. Однако ни один из многочисленных экспериментов, как уже говорилось, поставленных учеными XIX в. с целью определения движения Земли относительно эфира, не позволил «почувствовать» движения Земли. Тем не менее в течение долгого времени это отсутствие результата можно было увязать с теорией, поскольку предсказываемый эффект был весьма мал, а точность поставленных оптических экспериментов была недостаточно высока и не позволяла сделать вполне определенных выводов.
Действительно, можно показать, что движение наблюдателя по отношению к эфиру приводит к поправкам, пропорциональным квадрату отношения скорости движения наблюдателя к скорости света в пустоте. Поскольку же это отношение всегда очень мало, то и ожидаемый эффект также очень мал. Но физики, постоянно совершенствуя технику эксперимента, получили, наконец, возможность измерять столь слабые эффекты. Теперь уже с помощью опытов по интерференции с полной уверенностью можно было сказать, зависят результаты экспериментов от скорости Земли относительно эфира или нет.
И опыт снова дал, на этот раз уже определенно, отрицательный ответ: ожидаемый эффект, хотя и очень малый, но все же лежащий в пределах точности наблюдений, который предсказывала теория, обнаружить не удалось. Эфир продолжал оставаться неуловимым, что теперь уже явно противоречило классической теории. Этот чрезвычайно важный вывод позволил сделать знаменитый опыт Майкельсона - Морли. Другие опыты, которые тоже должны были обнаружить движение Земли относительно эфира с помощью уже не оптических, но электромагнитных явлений, были не более успешны, чем опыт Майкельсона - Морли.
- Министерство образования российской федерации
- Оглавление
- Предисловие
- Введение
- Методические рекомендации
- Глава 1. Структура естествознания
- 1.1. Предмет естествознания
- 1.1.1. Анализ понятия «природа»
- 1.1.2. Естествознание донаучное, преднаучное и научное
- 1.1.3. Неисчерпаемость предмета естествознания
- 1.1.4. Специфика донаучного и преднаучного естествознания
- 1.1.5. Специфика научного естествознания
- 1.2. Генезис научного естествознания
- 1.2.1. Перспективы античной преднауки
- 1.2.2. Замещение реальных объектов идеальными
- 1.2.3. Операции преобразования и моделирование изменений
- 1.3. Структура естественнонаучного познания
- 1.3.1. Принципы научного познания
- 1.3.2. Общие методы познания
- 1.3.3. Основные формы естествознания6
- 1.3.4. Непостижимая эффективность математики8
- Глава 2. Этапы развития естествознания
- 2.1. Ступени развития знания
- 2.1.1. «Естественная магия»
- 2.1.2. Магия и религия
- 2.1.3. Религия и естествознание
- 2.1.4. Специфика восточной преднауки
- 2.1.5. Письменность
- 2.2. Естественнонаучные аспекты античной натурфилософии
- 2.2.1. Евклидова геометрия - первая стандартная научная теория
- 2.2.2. Древнегреческий атомизм
- 2.2.3. Механика Архимеда16
- 2.2.4. Становление астрономии
- 2.3. Значение арабской системы знаний в истории естествознания21
- 2.3.1. Физические достижения арабского средневековья22
- 2.3.2. Астрономия арабо-мусульманского средневековья
- 2.4. Научные революции
- 2.4.1. Первая научная революция (xviIвек). Г. Галилей
- 2.4.2. Вторая научная революция (кон. XviiIв.- нач.XiXвека). И. Ньютон
- 2.4.3. Третья научная революция (кон. XiXв.- сер.XXвека)
- 2.4.4. Четвёртая научная революция (кон. XXвека)
- 2.5. Организация современного естествознания
- 2.5.1. Иерархия естественнонаучных законов
- 2.5.2. Этические принципы науки27
- 2.5.3. Роль междисциплинарных исследований в естествознании
- Глава 3. Фундаментальные Концепции естествознания
- 3.1. Термодинамика
- 3.1.1. Роль тепловых явлений в природе
- 3.1.2. Вещественная теория теплоты.
- 3.1.3. Корпускулярная теория теплоты
- 3.1.4. Законы термодинамики
- 3.2. Молекулярно-кинетическая теория (статистическая механика)
- 3.2.1. Основные положения молекулярно-кинетических представлений
- 3.2.2. Дискретность вещества
- Химия. Периодическая таблица химических элементов д. И. Менделеева32
- 3.2.4. Закон сохранения энергии
- 3.3. Электромагнитная теория
- 3.3.1. История открытия электричества
- 3.3.2. М. Фарадей: исследования электромагнетизма
- Заряд и поле. Закон сохранения электрического заряда
- Проводники, полупроводники и диэлектрики. Электрический ток
- Электромагнитное взаимодействие. Электромагнитная теория поля
- 3.4. Квантовая теория
- 3.4.1. Хронология становления квантовой теории
- 3.4.2. Гипотеза м. Планка. Кванты
- 3.4.3. Фотоэлектрический эффект и дискретная природа света
- 3.4.4. Квантовая теория атома н. Бора
- 3.4.5. Вероятностный характер процессов в микромире
- 3.4.6. Гипотеза Луи де Бройля об универсальности корпускулярно-волнового дуализма
- 3.4.7. Принцип неопределённости в. Гейзенберга
- 3.4.8. Волновая механика и уравнение э. Шредингера
- 3.4.9. Принцип дополнительности н. Бора
- 3.5. Симметрия
- 3.5.1. Симметрия и законы сохранения
- 3.5.2. Принципы, организующие сходство
- 3.5.3. Роль симметрии в организации мира
- Глава 4. Концепции движения, пространства и времени
- 4.1. Генезис представлений о пространстве и времени
- 4.1.1.Биологические предпосылки времени и виды пространства.
- 4.1.2. Пространство и время мифа и натурфилософии
- 4.1.3. Теоцентрическая модель пространства и времени
- 4.2. Классические концепции пространства и времени
- 4.2.1. Проблема континуальности и дискретности пространства и времени
- 4.2.2. Классические интерпретации пространства и времени
- 4.2.3. Проблемы реального пространства
- 4.3. Предпосылки неклассических интерпретаций пространства и времени
- 4.3.1. Принцип относительности и инерциальные системы (г. Галилей)
- Эфир как абсолютная система отсчёта. Опыт Майкельсона - Морли
- 4.3.3. Принцип относительности и электродинамика Максвелла
- 4.4. Специальная теория относительности (сто)
- 4.4.1. А. Эйнштейн. Единство пространства и времени. Связь массы и энергии38
- 4.4.3. Пространство и время в инерциальных системах
- 4.4.4. Неоднозначность геометрии физического пространства. Неевклидовы геометрии
- 4.5. Общая теория относительности (ото)
- 4.5.1. Инерция и гравитация
- 4.5.2. Теория гравитации
- 4.5.3. Гравитационные массы и искривление пространства - времени
- Глава 5. Хаос. Самоорганизация. Сложность
- 5.1. Хаос и порядок
- 5.1.1. Энтропия41
- 5.1.2. Принципы системности и целостности
- 5.1.3. Нелинейные системы. Рождение порядка
- 5.2. Самоорганизация
- 5.2.1. Синергетика
- 5.2.2 Механизм самоорганизации
- 5.2.3. Самоорганизация в диссипативных структурах
- 5.3. Необходимость и случайность
- 5.3.1. Проявление необходимости и случайности
- 5.3.2. Необходимость хаоса
- 5.3.3. Смысл информации
- 5.4. Сложность44
- 5.4.1. Понимание сложности. Неравновесное состояние систем
- 5.4.2. Сложное поведение и фазовое пространство45
- 5.4.3. Сложность поведения живых и социальных систем
- 5.4.4. Сложность адаптивных стратегий в живом мире
- 5.5. Управление
- 5.5.1. Кибернетика и теория управления
- 5.5.2. Информационная структура управления
- 5.5.3. Эффект обратной связи
- Глава 6. Жизнь
- 6.1. Проблема возникновения жизни
- 6.1.1. Специфика жизни как особого уровня организации материи
- 6.1.2. Гипотеза творения (креационизм)
- 6.1.3. Гипотеза спонтанного зарождения жизни
- 6.1.4. Гипотеза стационарного состояния
- 6.1.5. Гипотеза панспермии
- 6.1.6. Теория биохимической эволюции
- 6.2. Структура живого вещества
- 6.2.1. Признаки живого вещества
- 6.2.2. Виды регуляции организма
- 6.2.3. Постоянство внутренней среды (гомеостаз)
- 6.3. Теории эволюции
- 6.3.1. Зарождение эволюционного учения (ж. Ламарк, ж. Кювье, ч. Лайель)
- 6.3.2. Эволюционная теория естественного отбора (ч. Дарвин, а. Уоллес)52
- 6.3.3. Номогенез как альтернатива дарвинизму и как его дополнение
- 6.3.4. Вид и видообразование
- 6.3.5. Проблемы видообразования
- 6.4. Теория наследственности
- 6.4.1. Закон доминирования г. Менделя
- 6.4.2. Хромосомная теория наследственности
- 6.4.3. Структура гена. Расшифровка генетического кода
- 6.4.4. Днк, её роль в реализации наследственной информации
- 6.4.5. Клеточная теория (т. Шван, м Шлейден)
- 1.4.6. Биогенетический закон
- 6.5. Философское и естественнонаучное постижение смерти
- 6.5.1. Биологический и социальный смысл смерти
- 6.5.2. Что такое бессмертие?
- 6.5.3. Социальные следствия развития генной инженерии
- 6.5.4. Социальные и этические проблемы клонирования
- Глава 7. Биосфера
- 7.1. Генезис биосферы
- 7.1.1. Геологические условия возникновения биосферы
- 7.1.2. Эволюция биосферы. Живое вещество
- 7.1.3. Роль абиотических и биотических круговоротов
- Климатические первичные периодические
- 7.2. Биогеохимические процессы в биосфере
- 7.2.1. Состав вещества биосферы
- 7.2.2. Особенности основных биосферных циклов
- Биосферный цикл углерода
- Биосферный цикл азота
- Биосферный цикл фосфора
- 7.2.3. Биохимические функции живого вещества
- 7.2.4. Биогенная миграция атомов и биогеохимические принципы
- 7.3. Экологическая структура биосферы
- Биосфера - многокомпонентная иерархическая система
- Прокариоты и эукариоты. Бактерии. Вирусы и сине-зелёные водоросли
- 7.3.3. Растения. Грибы. Животные
- 7.4. Глобальное биологическое разнообразие и подходы к его изучению
- 7.4.1. Современные представления о видовом разнообразии биосферы74
- 7.4.2. Современные подходы к исследованию биоразнообразия75
- Популяционный подход
- Экосистемный подход
- 7.5. Ноосферогенез
- 7.5.1. В. И. Вернадский о переходе биосферы в ноосферу
- 7.5.2. Естественноисторические аспекты трансформации биосферы в ноосферу
- 7.5.3. Антропоцентризм и биосферное мышление
- Глава 8. Человек
- 8.1. Человек как вид
- 8.1.1. Человек: особый вид животных
- 8.1.2. Культурный и биологический аспекты эволюции человека
- 8.1.3. Нарушение основного биологического закона
- 8.2. Сознание и поведение
- 8.2.1. Функции головного мозга. Успехи нейрофизиологии
- 8.2.2. Поведение
- 8.2.3. Бихевиоризм
- 8.2.4. Гештальтпсихология
- 8.2.5. Этология и социобиология
- 8.3. Современное мировоззрение и планетарные проблемы
- 8.3.1. Проблема формирования современного мировоззрения
- 8.3.2. Глобальные последствия развития цивилизации
- 8.3.3. Деятельность «Римского клуба» и института л. Брауна «Worldwatch»
- 8.3.4. Новые ценности85
- 8.4. Концепция устойчивого развития
- 8.4.1. Экологическая и экономическая компоненты деятельности
- 8.4.2. Общие положения концепции устойчивого развития
- 8.4.3. Условия устойчивого развития и ключевые понятия концепции
- 8.5. Искусственный интеллект (ии)
- 8.5.1. Основные направления развития ии
- 8.5.2. Знания и их представление
- 8.5.3. Проблема понимания естественного языка
- Глава 9. Иерархия мироздания
- 9.1. Макромир
- 9.1.1. Основные этапы развития представлений о Вселенной
- 9.1.2. Релятивистская космология (а. Эйнштейн, а. А. Фридман)
- 9.1.3. Концепция расширяющейся Вселенной
- 9.1.4. Концепция «Большого Взрыва»
- 9.1.5. Антропный принцип90
- 9.2. Мезомир
- 9.2.1. Эволюция планеты Земля
- 9.2.2. Экологическая структура мезомира
- 9.2.3. Информационные свойства мезомира
- 9.3. Микромир
- 9.3.1. Учение об элементарных частицах
- 9.3.2. Элементарная структура вещества. Атом
- 9.3.3. Устойчивость и неустойчивость частиц. Термоядерные процессы. Ядро атома
- 9.3.4. Фундаментальные взаимодействия и законы природы92
- 9.3.5. Фундамент материи: физический вакуум и его состояния93
- 9.4. Виртуальные реальности
- 9.4.1.Значение термина «виртуальная реальность»
- 9.4.2. Компьютерная виртуальная реальность
- 9.4.3. Способы существования виртуальной реальности
- 9.4.4. О философии виртуальной реальности и киберпространства
- 9.5. Поиск внеземных цивилизаций
- 9.5.1. О возможности существования жизни и разума во Вселенной
- 9.5.2. О возможности информационного контакта с внеземными цивилизациями
- 9.5.3. О возможных формах технологической активности разума во Вселенной
- Летопись естественнонаучных открытий Период становления физики как науки
- Первый этап развития естествознания (кон. XviIв. – 60 годыXiXв.)
- Второй этап развития естествознания (60-е годы XIX в. - 1894 г.)
- Период современной физики
- Важнейшие открытия в биологии и медицине в хх веке
- Хронология клонирования
- Летопись открытий в химии
- Зарождение научной химии
- Утверждение в химии атомно-молекулярного учения
- Великие открытия в химии в хх веке
- Астрономия в хх веке
- Литература по главам Глава 1. Структура естествознания
- Глава 2. Этапы развития естествознания
- Глава 3. Фундаментальные концепции естествознания
- Глава 4. Концепции движения, пространства и времени
- Глава 5. Хаос. Самоорганизация. Сложность
- Глава 6. Жизнь
- Глава 7. Биосфера
- Глава 8. Человек
- Глава 9. Иерархия мироздания
- Литература дополнительная
- Словарь терминов
- Примечания
- 137 138