Лекция 6. Водный режим растений
План лекции (4 часа):
Роль воды в жизни растений
Характеристика водообмена растений
Передвижение воды по растению
Транспирация. Значение транспирации
Много добрых слов сказано о воде. Французский писатель Антуан де Сент-Экзюпери в книге «Планета людей» писал: «Вода! У тебя нет ни вкуса, ни цвета, ни запаха, тебя не опишешь, тобою наслаждаешься, не понимая, что ты такое. Ты не просто необходима для жизни, ты и есть жизнь... ты — величайшее в мире богатство... Ты —; божество, которое так легко спугнуть...». Растительные организмы возникли в воде, которая очень длительное время оставалась для них единственной средой обитания. После выхода растений на сушу водную среду сменила воздушная. В новых условиях существования усложнились механизмы добывания и расходования воды.
Наличие или отсутствие достаточного количества воды часто служит единственным фактором, определяющим распространение растительности на поверхности Земли, темпы ее роста, внешнее и внутреннее строение. И это неудивительно, ибо без воды не могут осуществляться процессы фотосинтеза, гидролиза различных веществ (например, крахмала), дыхания, роста и т.д., нарушается структура цитоплазмы клеток. Прекращение испарения ведет к перегреву и даже гибели растений.
Вода в биологических объектах выполняет следующие основные функции:
1. Водная среда объединяет все части организма, начиная от молекул в клетках и кончая тканями и органами, в единое целое. В теле растения водная фаза представляем собой непрерывную среду на всем протяжении от влаги, извлекаемой корнями из почвы, до поверхности раздела жидкость — газ в листьях, где она испаряется.
2. Вода — важнейший растворитель и важнейшая среда для биохимических реакций.
3. Вода участвует в упорядочении структур в клетках. Она входит в состав молекул белков, определяя их конформацию. Удаление воды из белков высаливанием или с помощью спирта приводит к их коагуляции и выпадению в осадок. В поддержании структур гидрофобных участков белковых молекул и липопротеинов, возможно, существенна роль структурированной ВОДЫ.
4. Вода — метаболит и непосредственный компонент биохимических процессов. Так, при фотосинтезе вода является донором электронов. При дыхании, например в цикле Кребса, вода принимает участие в окислительных процессах. Вода необходима для гидролиза и для многих синтетических
процессов.
5. Возможно, существенную роль в жизненных явлениях, особенно в мембранных процессах, играет относительно высокая протонная и электронная проводимость структурированной воды.
6. Вода — главный компонент в транспортной системе высших растений — в сосудах ксилемы и в ситовидных трубках флоэмы, при перемещении веществ по симпласту и апопласту.
7. Вода — терморегулирующий фактор. Она защищает ткани от резких колебаний температуры благодаря высокой теплоемкости и большой удельной теплоте парообразования.
8. Вода — хороший амортизатор при механических воздействиях на организм.
9. Благодаря явлениям осмоса и тургора (напряжения) вода обеспечивает упругое состояние клеток и тканей растительных организмов.
Водный обмен растений складывается из нескольких процессов: поглощения воды, передвижения ее по растению, усвоения и выделения.
Обычно большинство наземных цветковых растений поглощает воду с помощью корней, в то время как водные (и часть наземных: мхи, лишайники) — всей поверхностью. Растения-паразиты добывают влагу с помощью особых присосок.
Растительная клетка как осмотическая система. Растительная клетка окружена клеточной стенкой, которая обладает определенной эластичностью и может растягиваться. Вакуоль содержит большое количество осмотически активных веществ — сахаров, органических кислот, солей. При изучении осмотических явлений в растительных клетках обычно рассматривается упрощенная модель, в которой полупроницаемой мембраной считается система, состоящая из плазмалеммы и тонопласта одновременно. Поскольку мембрана избирательно проницаема и вола проходит через нее значительно легче, чем вещества, растворенные в клеточном соке и цитоплазме, при помещении клетки в воду последняя по законам осмоса будет поступать внутрь клетки.
Осмотическое давление (Р) разбавленных растворов подчиняется газовым законам и зависит от температуры, их молярной концентрации и относительного числа частиц (У).
Р = RСТУ, где
R - универсальная газовая постоянная, равная 0,0821 атм/градмоль;
С - концентрация раствора в молях;
Т - абсолютная температура (273°+ t°);
У - изотонический коэффициент.
Последний для неэлектролитов равен 1, а у электролитов зависит от числа частиц, на которые диссоциируют молекулы и от степени диссоциации. Для NaCl он примерно равен 1,5.
Силу, с которой клетка втягивает воду называют сосущей силой (S) . Она тождественна водному потенциалу клетки (). Величина сосущей силы определяется осмотическим давлением клеточного сока (P) и тургорным (гидростатическим) давлением в клетке (T), которое равно противодавлению клеточной стенки, возникающему при ее эластическом растяжении:
S = P – T; = - Р.
В условиях разной оводненности соотношения между всеми компонентами этого уравнения меняются. Когда клетка полностью насыщена водой (полностью тургесцентна), ее сосущая сила равна нулю, а тургорное давление равно потенциальному осмотическому. Состояние полного тургора наблюдается в клетках при достаточной влажности почвы и воздуха.
- Гоу впо «сибирский государственный технологический
- Введение
- Лекция 1. Предмет и задачи физиологии растений
- Методы физиологии растений
- Лекция 2. Структурные компоненты клетки и их физиологические функции
- Лекция 3. Химический состав клетки
- Углеводы
- Функции углеводов в растении важны и разнообразны:
- Моносахариды
- Химические свойства
- Полисахариды Олигосахариды
- Высшие полисахариды
- Белки Общая характеристика и функции белков
- Классификация белков
- Простые белки
- Сложные белки
- Жироподобные вещества
- Лекция 4. Фотосинтез
- Пигменты фотосинтеза
- Химизм фотосинтеза
- Световая фаза фотосинтеза
- Темновая фаза фотосинтеза
- С4 – путь фотосинтеза
- Экология фотосинтеза
- Лекция 5. Дыхание
- Экология дыхания
- Лекция 6. Водный режим растений
- Механизмы передвижения воды по растению
- Транспирация
- Лекция 7. Основы почвенной микробиологии
- Роль микроорганизмов в превращении азотистых веществ
- Фиксация молекулярного азота
- Превращение микроорганизмами углеродсодержащих веществ растительного происхождения
- Лекция 8. Минеральное питание растений
- Содержание менеральных элементов в растениях
- Микроэлементы
- Лекция 9. Превращение органических веществ в растении
- Запасные вещества вегетативных органов древесных растений
- Органические вещества вторичного происхождения
- Превращение органических веществ в семенах
- Лекция 10. Рост и развитие растений
- Гормоны растений
- Как действуют гиббереллины
- Действие цитокининов
- Действие абк.
- Практическое применение этилена
- Использование синтетических регуляторов роста (срр).
- Коррелятивный рост
- Регуляция роста и развития Регуляция светом темпа онтогенеза растений
- Качество и количество света
- Периодичность роста
- Покой семян
- Индивидуальное развитие растений
- Этапы онтогенеза высших растений
- Лекция 11. Устойчивость растений к неблагоприятным условиям среды
- Холодостойкость растений
- Морозоустойчивость растений
- Жароустойчивость растений
- Засухоустойчивость растений
- Влияние загрязнения атмосферы на растения
- Заключение
- Библиографический список Основная литература
- Доплнительная
- Приложение а Перечень ключевых слов