5. Изучение вирусов животных и человека
После того как Д. И. Ивановский установил способность ВТМ проходить через фильтры, задерживающие бактерии, началось изучение в том же плане возбудителей различных болезней животных и человека. Уже в 1898 г. Ф. Лефлер и П. Фрош сообщили о фильтруемости вируса ящура.
В течение нескольких последующих лет была установлена фильтруемость возбудителей чумы кур, желтой лихорадки и чумы свиней.
Поскольку большинство вирусов увидеть при помощи светового микроскопа нельзя, усилия ученых на первых этапах были направлены на изучение более крупных образований, которые формируют некоторые вирусы в пораженных клетках. Подобные включения были описаны еще и XIX в. при контагиозном моллюске человека, при оспе птиц и оспе человека (Г. Гварниери). В 1903 г. А. Негри описал своеобразные тельца, выявляемые в протоплазме нервных клеток при бешенстве. В 1921 г. Б. Липшютц классифицировал вирусные включения по их местоположению в ядре или цитоплазме клетки. Вирусы оспы и бешенства, например, формируют включения в цитоплазме, аденовирусы и герпетические вирусы — в ядре, а вирус кори — в ядре и цитоплазме. Было установлено, что включения различаются и по своей структуре. Они могут представлять собой места синтеза вирусных компонентов, агрегаты вирусных частиц или являться следствием нарушенного клеточного обмена.
Впервые непосредственно вирусные частицы удалось увидеть Дж. Буисту в 1887 г. при исследовании материала от оспенного больного; возбудитель оспы относится к наиболее крупным вирусам, размеры которого находятся на границе разрешающей способности светового микроскопа.
До 1931 г. выделение и культивирование вирусов человека и животных осуществлялось почти исключительно путем заражения восприимчивых животных. Имелись отдельные успешные попытки размножении вирусов в клеточных культурах (осповакцины, ящура), однако ввиду сложности техники они не нашли широкого применении.
Путем заражения животных были выделены и изучены возбудители оспы, бешенства, простого герпеса, гриппа, полиомиелита, лимфоцитарного хориоменингита, желтой лихорадки, ряда клещевых и комариных энцефалитов, энцефаломиелитов лошадей и некоторые другие. Однако этот метод не позволял получать вирус в больших количествах, необходимых для его детального изучения; к тому же большие трудности представляла очистка материала от тканевых фрагментов. Кроме того, далеко не все вирусные инфекции удавалось воспроизвести на лабораторных животных.
Толчком для дальнейшего развития вирусологии послужило открытие в 1931 г. Эрнстом Гудпасчером возможности культивировать вирус оспы кур в развивающемся курином эмбрионе. Было установлено, что очень многие вирусы хорошо размножаются в этих условиях, накапливаясь в хорионаллантоисной оболочке и жидкостях эмбриона. Очистка вируса от аллантоисной жидкости оказалась сравнительно простой. К тому же у некоторых вирусов (например, у ряда представителей оспенной группы) была обнаружена способность вызывать на хорионаллантоисной оболочке очаговые поражения, по числу которых можно весьма точно определить титр вируса.
В 1941 г. Г. Херст обнаружил у вируса гриппа способность склеивать эритроциты кур. В дальнейшем у многих вирусов была установлена способность агглютинировать эритроциты тех или иных млекопитающих и птиц. Это дало в руки вирусологов простой метод количественного определения многих вирусов и соответствующих антител.
В 30-е годы были разработаны новые методы исследования вирусов. В 1939 г. М. фон Арденн и X. Руска предложили метод электронно-микроскопического исследования вирусных частиц, находящихся во взвеси. Позже была разработана методика получения ультратонких тканевых срезов, позволяющая электронномикроскопически выявлять вирусы внутри пораженных клеток. Для получения концентрированных вирусных суспензий стали использовать ультрацентрифугирование. Путем измерения скорости осаждения различных вирусов оказалось возможным определить их размеры и вес. В 1933 г. У. Элфорд предложил использовать для определения размеров вирусов коллодийные мембраны с различной величиной пор. После получения ВТМ в кристаллическом виде было установлено, что формировать кристаллические структуры могут и некоторые мелкие вирусы позвоночных, например вирус полиомиелита.
Совершенно исключительное значение для развития вирусологии имела предложенная в 1948 г. Джоном Эндерсом с сотрудниками методика получения однослойных клеточных культур из обработанных трипсином тканей с добавлением пенициллина для ингибирования роста бактерий. Она позволяет выращивать практически любые типы клеток. Выращенные в культуре клетки нередко обладают значительно более широким спектром восприимчивости по отношению к различным вирусам, чем те же клетки в организме. При инокуляции достаточной дозы вируса оказалось возможным инфицировать одновременно все клетки однослойной культуры. Это позволило получать вирус в высоком титре, к тому же с небольшой примесью клеточных белков. Большинство вирусов при развитии в однослойных культурах вызывает дегенерацию клеток («цитопатический эффект»). Это явление стали широко использовать для титрования вирусов и антител.
Р. Дюльбекко и М. Фогт (1952) разработали на основе однослойных клеточных культур методику получения под слоем агара или другого геля колоний вируса (бляшек), образующихся из одной инфекционной вирусной частицы. Метод позволил производить точный подсчет количества инфекционных вирусных частиц, а также выделять отдельные клоны вируса, что необходимо при генетических и иных исследованиях.
Размеры вирусов животных и человека находятся в пределах от 300 нм (оспенные вирусы) до 18—22 нм (аденоассоциированные). Использование электронной микроскопии и рентгеноструктурного анализа в сочетании с рядом других методов позволило расшифровать структуру большинства вирусов. Начало этим исследованиям положили Ф. Крик и Дж. Уотсон в 1956 г. Было установлено, что все вирусы человека и животных состоят из ядра, содержащего один тип нуклеиновой кислоты — ДНК или РНК, и протеиновой оболочки (капсида). Вместе обе эти структуры носят название нуклеокапсида. Капсид любого вируса построен из структурных субъединиц, каждая из которых представляет одну или несколько полипептидных цепей. Существует два типа организации субъединиц — спиральный и кубический. У некоторых крупных вирусов (например, оспенных) могут комбинироваться оба способа соединения субъединиц. При спиральной структуре нуклеокапсид имеет форму тяжа (например, у вируса гриппа), а при кубической — правильного многогранника (например, у аденовирусов).
Мелкие вирусы (например, вирус полиомиелита) представляют собой «голый» нуклеокапсид. Более крупные вирусы (герпетические, миксовирусы) имеют еще внешнюю оболочку, которая у ряда вирусов состоит в основном из материала клетки и содержит протеины, углеводы и иногда липоиды.
Большинство РНК-содержащих вирусов животных и человека содержит одну молекулу одноцепочечной РНК. Исключение составляют реовирусы и группа арбовирусов, у которых РНК состоит из двух комплементарных цепей. У большинства ДНК-содержащих вирусов нуклеиновая кислота представляет собой двухцепочечную молекулу и только одна группа вирусов (парвовирусы) имеют одноцепочечную ДНК. Величина информации, заключенной в нуклеиновой кислоте разных вирусов, различна и зависит от длины тяжа нуклеиновой кислоты. Мелкие вирусы могут синтезировать небольшое число протеинов, более сложные — помимо структурных протеинов еще ферменты. Некоторые вирусы (например, адено-ассоциированные) обладают недостаточной информацией даже для собственного воспроизводства: для своего размножепия они нуждаются в аденовирусе-помощнике.
Для изучения процессов репликации вирусов животных и человека и взаимодействия их с клетками большое значение имел разработанный А. Кунсом (1941) метод окраски вирусных антител флюорохромами, например флюоресцеин-изотиоцианатом, который позволяет изучать при помощи люминесцентной микроскопии динамику накопления вирусных белков в клетке. На том же принципе основано использование конъюгиро-ванных с ферритином или пероксидазой антител, когда вирусные антитела в клетке выявляют при помощи электронной микроскопии.
Адсорбция вирусов животных на клетках происходит в результате действия электростатических сил, межмолекулярных сил Ван-дер-Ваальса, а также взаимодействия соответствующих друг другу рецепторов вируса и лигандов клетки. Есть вирусы (например, пикорнавирусы), адсорбирующиеся только на восприимчивых клетках; другие (оспенные и аденовирусы) могут соединяться как с восприимчивыми, так и невосприимчивыми клетками. Некоторые клетки, не обладающие рецепторами для взаимодействия с какими-либо вирусами in vivo, приобретают их при культивировании in vitro (почечные клетки приматов к вирусу полиомиелита).
В отличие от бактериофагов, вирусы животных не обладают каким-либо сложным аппаратом для введения в клетку своей нуклеиновой кислоты; они просто фагоцитируются клеткой. Некоторые вирусы (например, полиомиелита) уже при адсорбции на клетке теряют свой капсид. Другие (герпетические и оспенные вирусы, миксо- и аденовирусы) проникают в клетку в виде цельных вирионов, и уже там нуклеиновая кислота освобождается из капсида.
Было выяснено, что процесс репликации отдельных вирусов человека и животных имеет определенные особенности, однако у всех она протекает по общей принципиальной схеме. Репликация начинается с синтеза «ранних протеинов», которые служат для репликации нуклеиновой кислоты, но не включаются в вирусные частицы. Лишь после этого начинается процесс репликации самой нуклеиновой кислоты.
Что касается процесса синтеза структурных белков, входящих в состав вируса, то оказалось, что он протекает несколько отлично у ДНК- и РНК-содержащих вирусов. У первых на одной из цепей ДНК после их расхождения синтезируется информационная РНК, передающая информацию от ДНК клеточным рибосомам, где происходит синтез вирусных белков. У РНК-содержащих вирусов функция передачи информации принадлежит самой вирусной РНК.
Места синтеза вирусных компонентов в клетке у разных вирусов различны. У оспенных вирусов весь процесс протекает в цитоплазме, у аденовирусов — в ядре, в то время как ДНК герпетических вирусов синтезируется в ядре, а структурные белки в цитоплазме. Созревание всех вирусов, т. е. соединение нуклеиновой кислоты и белков, происходит в цитоплазме по типу самосборки.
Внешнюю оболочку вирусы приобретают при прохождении через различные клеточные мембраны. Свернутый в клубок нитевидный нуклеокапсид вируса гриппа и других микровирусов облекается оболочкой в момент прохождения через оболочку клетки. Герпетические вирусы приобретают оболочки при прохождении как сквозь ядерные, так и цитоплаз-матические мембраны.
Были описаны различные формы взаимодействия вирусных частиц, находящихся в одной клетке. Г. Берри и X. Дедрик (1936) наблюдали реактивацию гретого вируса миксомы, если его вводили кролику одновременно с инфекционным вирусом фибромы. Позже было установлено, что в этом случае активный вирус освобождает нуклеиновую кислоту гретого вируса из капсида, вследствие чего она приобретает способность функционировать. При генетической форме реактивации соединяются два или более поврежденных геномов одного вируса.
В 1956 г. Г. Херст и Т. Готлиб наблюдали рекомбинацию двух гриппозных штаммов с появлением генетически стойких вариантов со свойствами обоих родителей. В 1964 г. обнаружили даже образование гибридов между неродственными вирусами — аденовирусом человека и вакуолизирующим вирусом обезьян.
Особый интерес представляют онкогенные вирусы. Как уже отмечалось, в 1911 г. П. Раус перевил саркому кур бесклеточным фильтратом. В 1936 г. Дж. Битнер открыл вирус рака молочных желез мышей. Затем была обнаружена способность вызывать трансформацию клеток in vitro у ДНК-содержащих онкогенных вирусов — полиомы, SV40 обезьян, аденовирусов.
Все онкогенные РНК-содержащие вирусы относятся к одной группе - лейковирусам, в то время как ДНК-содержащие — к различным группам - оспенным вирусам, паповавирусам, аденовирусам и герпетическим. Общим свойством обеих групп является способность интегрировать свой геном в геном клетки, вследствие чего она приобретает способность к неограниченному росту. Эта концепция была выдвинута Р. Дюльбекко (I960) и Л. А. Зильбером (1961). Было установлено, что трансформированные ДНК-содержащими вирусами клетки содержат часть вирусного генома, синтезируют вирусспецифический антиген, но не продуцируют вирусных частиц (исключение составляют оспенные вирусы).
В отношении РНК-содержащих вирусов X. Темин в 1964 г. показал, что они включают в клеточный геном не РНК, а вновь образованную комплементарную двуспиральную ДНК. У всех лейковирусов был обнаружен необходимый для этого фермент — РНК-зависимая ДНК-полимераза (ревертаза) (Г. Темин, С. Мицетани, 1970). Следует отметить, что большинство онкогенных вирусов могут функционировать и как инфекционные, вызывая дегенерацию клеток.
Одной из реакций клетки на внедрение вируса является выработка резистентности к заражению другим вирусом (явление интерференции). В 1935 г. М. Хоскинс сообщил о взаимном подавляющем действии ней-ропного и висцеротропного штаммов вируса лихорадки в опытах на обезьянах, а Ф. Маграсси — двух различных штаммов вируса герпеса простого при введении кроликам. Вскоре интерференция была выявлена и между неродственными вирусами, если опыты ставились с куриными эмбрионами или клеточными культурами. Далее было установлено, что резистентность клетки может вызвать не только живой, но и инактивированный вирус. В большинстве случаев интерференция оказалась связанной с синтезом клеткой особого белка — интерферона, открытого А. Айзаксом и Дж. Линденманном в 1957 г. Интерферон обусловливает невосприимчивость клетки к различным вирусам и отличается видоспецифичностью (так, куриный интерферон защищает только куриные клетки).
Надежды использовать интерферон для лечения вирусных заболеваний не оправдались, хотя он и может применяться как профилактическое средство. Большее значение имеет стимуляция синтеза организмом собственного интерферона; индукторами могут служить определенные химические соединения, например двутяжевые РНК.
Наиболее эффективным методом борьбы с вирусными инфекциями остается активная иммунизация. Предложенная Э. Дженнером в 1796 г. вакцина против оспы является одним из лучших противовирусных препаратов. Занимаясь практической врачебной деятельностью, англичанин Эдуард Дженнер (1749—1823) изучал известные в народной медицине предохранительные свойства коровьей оспы: люди, переболевшие ею, становятся иммунными как к коровьей, так и к человеческой оспе. После долгих и тщательных наблюдений 14 мая 1796 г. Дженнер впервые провел прививку коровьей оспы восьмилетнему мальчику, использовав материал, взятый от женщины (доярки), болевшей коровьей оспой. Прививка сопровождалась недомоганием. А два месяца спустя мальчик был инфицирован гноем из пустулы больного натуральной оспой— и остался здоровым. В 1798 г., после многократного повторения этого опыта, Дженнер опубликовал результаты своей работы. Он предложил назвать новый метод вакцинацией (от латинского vaccinia — коровья оспа).
Страх перед оспой был так велик, что метод Дженнера приняли с восторгом, а сопротивление наиболее консервативных было быстро сломлено. Вакцинация распространилась по всей Европе, и болезнь отступила. В странах с высокоразвитой медициной врачи уже не чувствовали себя беспомощными в борьбе с оспой. В истории человечества это был первый случай быстрой и радикальной победы над опасной болезнью.
Задолго до открытия вирусов была также разработана Л. Пастером вакцина против бешенства. Очень эффективным препаратом оказалась вакцина против желтой лихорадки, разработанная в 30-е годы XX в. Все эти вакцины готовятся из живых ослабленных штаммов вируса.
Вакцина против желтой лихорадки была получена в 30-е годы южноафриканским микробиологом Максом Тейлером после длительных внутримозговых пассажей (серии последовательных заражений) вируса, сначала на обезьянах, а затем на белых мышах. У мышей вирус желтой лихорадки вызывал энцефалит — воспаление головного мозга. После длительного пассирования вируса на мышах Тейлер вновь привил его обезьянам. К этому времени вирус был уже ослаблен, и обезьяны страдали лишь очень слабыми приступами желтой лихорадки. Но у животных вырабатывалась полная невосприимчивость к большинству вирулентных штаммов вируса.
В 1936 г. Тейлер создал еще более безвредную вакцину против желтой лихорадки, отобрав ослабленный вирусный штамм из штаммов, длительно пассированных (до 200 раз) в культуре ткани куриного эмбриона.
Вирус полиомиелита был выделен в 1908 г. Ландштейнером, впервые заразившим этой болезнью обезьян. Однако обезьяны — малопригодный объект для поисков ослабленного штамма из-за дороговизны и трудности содержания большого числа животных.
Американский микробиолог Джон Эндерс с двумя молодыми помощниками, Томасом Веллером и Фредериком Роббинсом, в 1948 г. попытался культивировать вирусы в однослойной культуре клеток куриных эмбрионов, обработанных трипсином. Подобные попытки делались и раньше, но всегда оканчивались неудачей, поскольку культура вируса вытеснялась быстро размножающимися бактериями. Однако Эндерс добавил к среде открытый незадолго до этого пенициллин. Последний приостанавливал рост бактерий, никак не влияя на вирус. Вначале Эндерсу удалось успешно культивировать вирус паротита, а затем вирус полиомиелита (1949). Появилась возможность выращивать вирус полиомиелита в достаточном количестве, а значит, и надежда напасть среди сотен штаммов на ослабленный с желательными свойствами. Американский микробиолог Альберт Сейбин успешно селекционировал и очистил в 1957 г. три типа ослабленных вакцинных штаммов для каждого из трех разновидностей полиомиелита и создал эффективную живую вакцину.
Эта вакцина сыграла важнейшую роль в борьбе с полиомиелитом. Массовое распространение получила также живая вакцина против кори. Очень сложно оказалось создать эффективную вакцину против гриппа вследствие ускоренной изменчивости циркулирующих в природе вирусов гриппа («антигенный дрейф»).
Химиотерапия вирусных инфекций достигла определённых успехов, особенно при использовании с профилактической целью. При оспенном и герпетическом поражении роговицы используют 2-иод-2'-дезоксиуридин, блокирующий синтез вирусной ДНК. Метисазон оказался весьма эффективным в отношении оспенной инфекции, подавляя синтез структурных белков вируса. Ингавирин эффективен для профилактики и лечения гриппа и ОРВИ.
- История и методология биологии
- Содержание
- Введение
- Лекция № 1
- 1. Представления о природе в древности
- 2. Уровень познания живой природы в Древней Греции
- 2.1. Философы - материалисты
- 2.2. Ионийская школа
- 2.3. Афинская школа
- 2.4. Александрийская школа
- 3. Представления о живой природе на заре новой эры в Древнем Риме
- 4. Уровень изучения живой природы в Средневековье
- 4.1. Господство схоластики при объяснении явлений природы
- 4.2. Возрождение интереса к наблюдениям при изучении явлений природы
- Лекция № 2
- 1. Создание экспериментального естествознания в эпоху Возрождения
- 2. Успехи в области ботаники, систематики и физиологии растений
- 3. Зоологические исследования
- 4. Методологические итоги изучения живой природы
- Лекция № 3
- 1. Развитие систематики и попытка построения естественных систем
- 2. Достижения в области физиологии растений
- 3. Исследования в области зоологии
- 4. Исследования в области эмбриологии
- 5. Характеристика основных догм о живой природе в XVIII в. И их критика
- Лекция № 4
- 1. Достижения в сравнительной морфологии и анатомии животных и растений
- 2. Успехи в систематике, экологии и палеонтологии животных и растений
- 3. Исследование онтогенеза и эмбрионального развития животных и растений
- 4. Успехи в области физиологии животных и растений
- 5. Клеточная теория
- 6. Учение ж.Б. Ламарка
- Лекция № 5
- 1. Ч.Дарвин и теория естественного отбора
- 2. Эволюционное направление в палеонтологии и систематике
- 3. Развитие эмбриологии животных и растений
- 4. Исследования структурно-функциональной организации живых существ
- 5. Развитие представлений о целостности живой природы
- 6. Дискуссии об эволюции и их влияние на развитие биологии в XX в.
- Лекция № 6
- 1. Открытие гормонов
- 2. Достижения в исследовании иммунитета
- 3. Открытие групп крови
- 4. Создание химиопрепаратов
- 5. Создание первых антибиотиков и пестицидов
- 6. Исследование продуктов промежуточного обмена
- 7. Использование в биохимии радиоактивных изотопов
- 8. Открытие витаминов
- 9. Исследования нервной деятельности и поведения
- Лекция № 7
- 1. Открытие ферментов и коферментов
- 2. Изучение тонкой структуры белков с помощью физико-химических методов
- 3. Изучение строения биомолекул методом хроматографии
- 4. Установление первичной структуры белка
- 5. Краткая история генетики
- Роль отечественных ученых в развитии генетики
- Лысенковщина
- Причины лысенковщины:
- 6. Установление роли днк
- 7. Открытие двойной спирали днк
- 8.Расшифровка генетического кода
- Лекция № 8
- 1. Зарождение протистологии
- 2. Зарождение бактериологии
- 3. Проблема самозарождения микроорганизмов
- 4.Морфология и систематика микроорганизмов
- 5. Формирование микробиологии как самостоятельной науки
- 6. Вклад р.Коха в бактериологию
- 7. Начало научной деятельности л. Пастера
- 8. Опровержение теории самопроизвольного зарождения микроорганизмов
- 9. Подтверждение л. Пастером микробной теории инфекционных заболеваний
- 10. Создание л. Пастером учения об иммунитете
- 11. Фагоцитарная и гуморальная теории иммунитета
- 12. Изучение участия микробов в природных процессах
- 13. Создание с. Н. Виноградским почвенной микробиологии
- 14. Разработка методов микробиологических исследований
- 15. Особенности микробиологии в XX веке
- Лекция № 9
- 1. Зарождение вирусологии
- 2. Возникновение и развитие учения о вирусах бактерий
- 3. Развитие представлений о лизогении
- 4. Расшифровка природы лизогении
- 5. Изучение вирусов животных и человека
- 6. Развитие фитовирусологии
- 7. Заключение
- Список источников литературы:
- 610000, Г. Киров, ул. Московская, 36, тел.: (8332) 64-23-56, http://vyatsu.Ru