logo search
3

9.1.3. Концепция расширяющейся Вселенной

Самый серьезный удар по представлению о стационарности Вселенной был нанесен результатами измерений скоростей удаления галактик, полученными Хабблом. В 1929 г. после огромной работы по получению и изучению спектров галактик, а также по определению различными методами расстояний до этих галактик, Э. Хаббл надежно установил факт расширения Вселенной. Он показал, что в «разбегании» галактик существует замечательная закономерность. Чем дальше от нас находится галактика, тем с большей скоростью она удаляется, то есть тем больше её красное смещение. Причем закон имеет предельно простую линейную форму: v=HR, где v - скорость галактики, R - расстояние до нее, а Н - коэффициент пропорциональности, называемый постоянной Хаббла.

Чтобы по достоинству оценить результат Хаббла, нужно помнить, что звезды не рассеяны во Вселенной равномерно: они, наоборот, сгруппированы в отдельные «острова» - галактики, каждая из которых включает в себя в среднем более 100 млрд. звезд, а также межзвездный газ и межзвездную пыль; галактики в большинстве своем имеют «правильную» форму спирали или эллипса, при этом диаметр галактики может достигать и даже превосходить 100000 световых лет. Млечный путь как раз представляет собой одну такую галактику, ту самую «Галактику», которая включает в себя в качестве незначительной периферийной звезды и наше Солнце. В действительно космическом масштабе мы имеем дело уже не со звездами, а с галактиками как отдельными объектами, расстояния до которых измеряются миллионами световых лет.

Итак, Хаббл в результате целой серии кропотливых измерений обнаружил, что любая галактика удаляется от нас в среднем со скоростью, пропорциональной расстоянию до нее, с коэффициентом пропорциональности, равным примерно 20 км/с на миллион световых лет. Например, галактика, находящаяся на расстоянии в 100 млн. световых лет, удаляется от нас со скоростью 2000 км/с. Обнаружены квазары, которые удаляются от нас со скоростью 285000 км/с и которые, следовательно, находятся на расстояниях порядка 10 млрд. световых лет.

Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной, уже, впрочем, ранее получившее сильный удар при открытии эволюции звезд. Значит, галактики вовсе не являются космическими фонарями, подвешенными на одинаковых расстояниях друг от друга для утверждения сил небесных, и, более того, раз они удаляются, то когда-то в прошлом они должны были быть ближе к нам.

Удаляясь со скоростью 20 км/с, галактика проходит примерно 600 млн. км за год, или 60 световых лет за миллион лет; на то, чтобы преодолеть (при постоянной скорости) тот миллион световых лет, который нас разделяет, ей, по-видимому, понадобилось несколько меньше, чем 20 млрд. лет. Следовательно, около 20 млрд. лет тому назад все галактики, судя по всему, были сосредоточены в одной точке, поскольку (согласно закону Хаббла) галактики, которые находятся на расстояниях в десять раз больше других, имеют в десять же раз большую скорость; следовательно, время удаления одинаково для всех галактик.

Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы. Например, представим себе солдат, выстроенных на какой-нибудь площади с интервалом 1 м. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 м. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоявших солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоявших друг от друга на расстоянии 100 м, будет 100 м/мин, если учесть, что расстояние между ними увеличится от 100 до 200 м.

Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: «галактики-солдаты» по-прежнему распределены равномерно, и сохраняются те же пропорции между различными взаимными расстояниями. Единственный недостаток нашего сравнения заключается в том, что на практике один из солдат все время стоит неподвижно в центре площади, в то время как остальные разбегаются со скоростями тем большими, чем больше расстояния от них до центра. В космосе же нет верстовых столбов, относительно которых можно было бы провести абсолютные измерения скорости; такой возможности мы лишены теорией относительности: каждый может сравнивать свое движение только с движением рядом идущих, и при этом ему будет казаться, что они от него убегают.

Мы видим, таким образом, что закон Хаббла обеспечивает неизменность космологического принципа во все времена, и это утверждает нас во мнении, что как закон, так и сам принцип действительно справедливы.

Итак, после получения красных смещений галактики предстали перед нами удаляющимися от нашей Галактики, причем скорость удаления растет с увеличением расстояния. Означает ли это, что наша галактика является центром, из которого происходит это расширение? Вовсе нет. Наблюдатель в любой галактике увидел бы точно такую же картину: все галактики, несвязанные гравитационно с родной галактикой наблюдателя, имели бы красные смещения, пропорциональные расстоянию между галактиками. Действительно, увеличивается расстояние между всеми галактиками. Пространство «раздувается».

Расширение Вселенной можно проиллюстрировать замечательным примером. Представьте себе двумерных существ, двумериков, живущих на поверхности воздушного шарика. Нарисуем на нем галактики и поселим в них этих двумериков. Пусть они могут наблюдать в свои телескопы соседние галактики. Начнем теперь надувать шарик. Каждый двумерик-наблюдатель в своей галактике будет видеть, что другие галактики удаляются от него. Сам же центр расширения на поверхности шарика, то есть в Метагалактике двумериков, отсутствует.

Как уже говорилось, чем дальше находятся участки Вселенной, тем быстрее они от нас удаляются; галактики представляются нам такими, какими они были в далеком прошлом, поскольку свету, идущему от них, требуется время, чтобы до нас дойти. Таким образом, большие телескопы совершают, кроме всего прочего, путешествие в прошлое. Наблюдая все более далекие объекты, мы видим, как они разлетаются со скоростями, которые все ближе и ближе к непреодолимому барьеру - скорости света. Существуют квазары - объекты, крайне яркие и видимые на громадных расстояниях, - которые удаляются со скоростями в 285000 км/с, что лишь немного меньше скорости света, равной 300000 км/с.

Если бы мы могли увидеть какие-нибудь объекты, «приставленные к стенке скорости света», то они бы выглядели так же, как у истоков Вселенной. Но не все объекты, содержащиеся во Вселенной, можно будет когда-нибудь увидеть; свет от объектов, расположенных дальше определенного расстояния, так и не успевает дойти до нас, и они навсегда остаются скрытыми от наших взоров, так же как слишком далекое здание на поверхности Земли скрыто за горизонтом.

Но, если все галактики удаляются от нашей, не означает ли это, что Земля - центр Вселенной? Ответ по-прежнему отрицательный. Расстояния между любыми галактиками увеличиваются со скоростями, пропорциональными самим расстояниям, и человек, оказавшийся случайно в пределах другой галактики, обнаружит справедливость того же закона Хаббла. При этом его горизонт окажется смещенным, и он сможет увидеть то, что скрыто от нас, в то время как другие объекты, видимые с Земли, будут скрыты от него.

Согласно общей теории относительности Эйнштейна, присутствие вещества в пространстве приводит к искривлению последнего. При наличии достаточного количества вещества можно построить модель искривленного пространства, напоминающего искривленную поверхность Земли.

Передвигаясь на Земле в одном направлении, мы, в конце концов, пройдя 40000 км, должны вернуться в исходную точку. В искривленной Вселенной случится то же самое, но спустя 40 млрд. световых лет; кроме того, «роза ветров» не ограничивается четырьмя частями света, а включает направления также вверх - вниз, или, точнее, зенит - надир. Итак, Вселенная напоминает надувной шарик, на котором нарисованы галактики и, как на глобусе, нанесены параллели и меридианы для определения местоположения точек; но в случае Вселенной для определения положения галактик необходимо использовать не два, а три измерения. А можно ли взглянуть внутрь надувного шарика? Для этого пришлось бы выйти в четвертое измерение, чего никто делать не умеет и хотя можно использовать и шесть измерений, все мы, в конце концов, сходимся на том, что речь здесь идет лишь о некой игре слов, а всю физическую сторону этого вопроса вполне можно осознать, будучи, так сказать, нарисованными на поверхности такого воздушного шарика.

Расширение Вселенной напоминает процесс надувания этого шарика: взаимное расположение различных объектов на его поверхности не меняется; на шарике нет выделенных точек; площадь, на которой были выстроены солдаты, теперь представляет всю Вселенную; площадь эта весьма странная: выходим через калитку на север, а, возвращаясь, обнаруживаем, что появляемся на площади с южной стороны и т. д.

Рентгеновские лучи равномерно со всех сторон облучают Землю. Наблюдения показали, что они возникают всякий раз, как пыль, газ и звёзды, разрушенные гравитационными силами, поглощаются чёрной дырой. Чёрные дыры превосходят по массе все известные в мироздании тела. Из окружающей её окрестности чёрная дыра высасывает гигантские количества материи: в каждую минуту проглатывается масса, равная нашему земному шару. Столкновение частиц при этом рождает рентгеновское излучение. Почти все рентгеновские лучи приходят из далёкого прошлого, когда шло энергичное образование звёзд. Можно полагать, что чёрные дыры появились вскоре после первоначального взрыва, породившего нашу Вселенную, но до того как возникли первые звёзды. Вероятно, что сверхмассивные чёрные дыры стали в последующем центрами галактик. Уже определено более 30 галактик, заключающих в себе эти образования87.

Мир галактик не только велик, но и разнообразен. Они резко различаются размерами, внешним видом и числом входящих в них звёзд, светимостью. Основоположником внегалактической астрономии, которая занимается этими вопросами, по праву считается американский астроном Эдвин Хаббл (1889-1953). Он доказал, что многие туманности на самом деле не что иное, как галактики, состоящие из множества звёзд. Он изучил свыше тысячи галактик и определил расстояние до некоторых из них. Среди галактик выделил три основных типа: спиральные, эллиптические и неправильные.

Более половины галактик - спиральные. В центре их находится яркое ядро (большое тесное скопление звёзд). Из ядра выходят спиральные, закручивающиеся вокруг него ветви, состоящие из молодых звёзд и облаков нейтрального газа. Все ветви лежат в плоскости вращения галактики. Поэтому она имеет вид сплющенного диска.

Эллиптические галактики на фотографиях выглядят как эллипсы с разной степенью сжатия. Примерно четверть из наиболее ярких галактик относится к их числу.

Неправильные галактики отличаются хаотической клочковатой структурой и не имеют какой-либо определённой формы. Хотя неправильные галактики самый немногочисленный класс галактик, исследование их очень важно. Астрофизика постоянно обнаруживает в них что-нибудь интересное: вспышка сверхновой в Большом Магеллановом облаке, открытия в туманности Тарантул88.