logo search
3

9.3.4. Фундаментальные взаимодействия и законы природы92

Основные взаимосвязи между силами в природе описываются с помощью физических законов и принципов. К ним относятся:

Попытки классификации взаимодействий привели к идее выделения минимального набора фундаментальных взаимодействий, при помощи которых можно объяснить все наблюдаемые явления. По мере развития естествознания этот набор менялся. В ходе экспериментальных исследований периодически обнаруживались новые явления природы, не укладывающиеся в принятый фундаментальный набор, что приводило к его расширению (например, открытие структуры ядра потребовало введения ядерных сил).

Теоретическое осмысление, стремящееся к единому, экономному описанию наблюдаемого многообразия, неоднократно приводило к «великим объединениям» внешне совершенно несхожих явлений природы. Так Ньютон понял, что падение яблока и движение планет вокруг Солнца являются результатами проявления гравитационных взаимодействий, Эйнштейн установил единую природу электрических и магнитных взаимодействий, Бутлеров опроверг утверждения о различной природе органических и неорганических веществ. В настоящее время принят набор из четырех типов фундаментальных взаимодействий: гравитационные, электромагнитные, сильное и слабое ядерные. Все остальные, известные на сегодняшний день, могут быть сведены к суперпозиции перечисленных.

Гравитационные взаимодействия обусловлены наличием у тел массы и являются самыми слабыми из фундаментального набора. Они доминируют на расстояниях космических масштабов (в мега-мире).

Электромагнитные взаимодействия обусловлены специфическим свойством ряда элементарных частиц, называемым электрическим зарядом. Играют доминирующую роль в макромире и микромире вплоть на расстояниях, превосходящих характерные размеры атомных ядер.

Ядерные взаимодействия играют доминирующую роль в ядерных процессах и проявляются лишь на расстояниях, сравнимых с размером ядра, где классическое описание заведомо неприменимо.

Наблюдения астрономических явлений привело человечество к ряду важнейших открытий. Самый известный и важный пример—закон всемирного тяготения. Этот закон был сформулирован И. Ньютоном на основе законов планетных движений, выведенных И. Кеплером в начале XVIIв. Закон всемирного тяготения Ньютона используется до настоящего времени для изучения движения естественных и искусственных космических тел в Солнечной системе, так как релятивистские поправки к движению тела со скоростью в десятки км/с, очевидно, малы.

В XIXв. триумфом теории тяготения Ньютона и математических методов аналитической механики стало предсказание существования новой планеты Нептуна Адамсом и Ле Верье.

В 1916 г. А. Эйнштейн, используя принципы эквивалентности и относительности, сформулировал релятивистское обобщение теории тяготения Ньютона - Общую теорию относительности (ОТО). Согласно ОТО, любая форма материи и ее движение являются источником гравитации, которая математически интерпретируется как «искривление» пространства-времени.

Наиболее известный пример космических источников гравитационных волн - двойные звездные системы, состоящие из двух нейтронных звезд с массами около 1.4 масс Солнца, вращающихся по вытянутым орбитам вокруг общего центра тяжести с периодами несколько часов. Такие системы обнаружены среди двойных радиопульсаров, когда одна нейтронная звезда из пары является радиопульсаром. Изучая времена прихода импульсов от пульсара, можно с помощью эффекта Доплера изучать особенности движения такой нейтронной звезды.

Из-за уноса энергии гравитационными волнами орбитальный период таких систем должен постоянно уменьшаться. Этот эффект был обнаружен у ряда двойных пульсаров (наиболее известный пример - PSR 1913+16), хотя изменение орбитального периода составляет крайне малую величину около одной десятитысячной доли секунды в год! Прямое детектирование гравитационных волн требует создания очень чувствительных детекторов, строительство которых ведется в США, Западной Европе и Японии. Из-за универсального характера тяготения именно ОТО служит основой для описания строения и эволюции Вселенной в целом.

Электромагнитное и слабое взаимодействия следуют за гравитационным по своей распространенности в природе. Основная информация, которую мы получаем о космических объектах, переносится переменным электромагнитным полем - электромагнитными волнами (фотонами).

Генерация электромагнитных волн связана с ускоренным движением электрических зарядов (в основном электронов). В отличие от гравитационных волн, генерация которых требует когерентного движения больших масс вещества, рождение электромагнитных волн в космосе происходит при хаотическом (тепловом) движении отдельных частиц космической плазмы, спонтанных и вынужденных переходах возбужденных атомов и при рекомбинации свободных электронов на атомные уровни.

Кроме этого важным источником электромагнитного излучения во многих космических объектах являются релятивистские электроны, движущиеся в магнитном поле (синхротронное излучение), а также рассеяние фотонов на свободных электронах (комптон - эффект). Свечение звезд обязано происходящим в их недрах термоядерным реакциям синтеза. Рождающиеся при этом рентгеновские фотоны многократно рассеиваются, поглощаются и переизлучаются, прежде чем достичь внешних слоев звезд (фотосферы), из которых они могут свободно покидать звезду.

Температуры фотосфер в тысячи раз меньше, чем в центре звезд, поэтому основное излучение звезд приходится на оптическую, ультрафиолетовую и инфракрасную области спектра. Фотоны уносят большую часть энергии, освобождаемую при термоядерных реакциях. В звездной плазме температуры (даже в фотосфере) столь высоки, что кинетическая энергия движения частиц намного превышает их потенциальную энергию кулоновского взаимодействия, поэтому вещество в обычных звездах с высокой точностью может рассматриваться как идеальный газ, характеризуемый температурой, плотностью и химическим составом.

Именно давление нагретого идеального газа противостоит сдавливающему воздействию гравитации в обычных звездах. Действие электростатических кулоновских сил, однако, становится определяющим в холодных космических телах—планетах, кометах, твердых частицах пыли. Нет ни одного свойства электромагнитных волн, которое не проявилось бы в космических условиях. Например, по эффекту расщепления спектральных атомных линий в магнитном поле (эффект Зеемана) определяют величину большого магнитного поля на звездах. Слабое магнитное поле в межзвездной среде (с напряженностью в миллион раз меньше поля Земли) может быть измерено по наблюдениям поворота плоскости поляризации электромагнитных волн от источников, «просвечивающих» межзвездную среду (эффект Фарадея).

Мощные токи, текущие в нейтронных звездах, поддерживают их колоссальное магнитное поле с напряженностью, в тысячи миллиардов раз превосходящих поле Земли, практически без затухания в течение миллионов лет. Вращение намагниченной нейтронной звезды приводит к возникновению огромных электрических полей вблизи ее поверхности, которые вырывают частицы с твердой поверхности нейтронной звезды, и ускоряют их до релятивистских скоростей. Синхротронное излучение таких частиц в магнитном поле рождает жесткие гамма кванты и приводит, в конечном счете, к возникновению наблюдаемого радиоизлучения пульсара.

Слабое взаимодействие также играет исключительно важную роль при эволюции звезд. Именно медленность основной реакции протон-протонного цикла в центре Солнца, идущей по каналу слабого взаимодействия, объясняет «долголетие» звезд типа Солнца (10 млрд. лет). Нейтрино очень слабо взаимодействуют с веществом. Поэтому звезды «прозрачны» для нейтрино. Нейтрино является прямым свидетелем ядерных реакций в центре Солнца. В настоящее время в ряде экспериментов поток нейтрино от Солнца уверенно зарегистрирован. Он оказался примерно вдвое меньше, чем ожидалось. Это различие может быть связано с фундаментальными свойствами нейтрино как элементарной частицы. По мере эволюции звезды роль нейтрино усиливается и у массивных звезд на финальных стадиях становится определяющей.

Нейтрино становится основным источником светимости массивной звезды на стадии сверхновой, когда силам гравитации, сжимающим ядро звезды, не в силах противостоять ни давление горячей звездной плазмы, ни даже квантовомеханическое давление электронов. Происходит процесс нейтронизации вещества, когда протоны соединяются с электронами с образованием нейтронов и нейтрино. В процессе катастрофического сжатия центра звезды формируется компактная нейтронная звезда с массой около массы Солнца и радиусом в 10 км, а нейтрино уносят практически всю освобождаемую энергию, составляющую около 15 процентов от массы покоя нейтронной звезды.

По современным представлениям, малая часть этой гигантской энергии может передаваться от нейтрино, окружающей вновь сформировавшуюся нейтронную звезду, массивной оболочке звезды, состоящей из обычного вещества. Оболочка равная нескольким массам Солнца сбрасывается, и наблюдается колоссальное астрономическое явление—вспышка сверхновой звезды. Правильность наших представлений о процессах слабого взаимодействия при коллапсе ядра звезды подтвердилась регистрацией потока нейтрино от вспышки сверхновой 1987 в Большом Магеллановом Облаке.

Cильные (ядерные) взаимодействия отвечают за многие важные ядерные реакции в недрах звезд и синтез тяжелых элементов. По современной теории «горячей Вселенной», образование основных химических элементов водорода и гелия - завершилось еще на дозвездной стадии эволюции Вселенной в эпоху, когда температура плазмы была около 1 млрд. градусов а «возраст» Вселенной был «всего лишь» 200 с. Более тяжелые элементы образовались в ходе термоядерных реакций синтеза в недрах звезд.

Однако в этих реакциях могут образовываться химические элементы только до элементов группы железа (кобальт, никель, железо). Дальнейшее присоединение нуклонов к ядрам требует затрат энергии. Рождение более тяжелых элементов происходит путем захвата ядрами нейтронов (протон захватить невозможно из-за огромных сил кулоновского отталкивания). Захваченные нейтроны в ядре превращаются в протоны с испусканием электрона и антинейтрино по каналу слабого взаимодействия, и атомный номер элемента, таким образом, увеличивается на 1. Эти процессы эффективно происходят во время вспышек сверхновых звезд. Расчеты показывают, что последовательным захватом нейтронов можно «сконструировать» все стабильные элементы вплоть до трансурановых.

Ядерные силы определяют специфическое состояние сверхплотной материи нейтронных звезд. Действительно, при массе в массу Солнца и радиусе 10 км средняя плотность нейтронной звезды порядка плотности атомного ядра. В некотором смысле нейтронная звезда представляет собой гигантское нейтральное атомное ядро. Принципиальное отличие, однако, заключается в том, что обычное ядро от развала на составные части удерживают ядерные силы, а нейтронная звезда существует из-за колоссальной гравитации собранного в ней вещества. Точного микроскопического описания вещества при таких плотностях в настоящее время нет из-за невероятной сложности этой задачи. Однако из астрофизических наблюдений пульсаров и рентгеновских источников удается восстановить многие макроскопические свойства нейтронных звезд - их массы, радиусы, моменты инерции. В конечном счете это налагает важные ограничения на возможное физическое состояния недр нейтронных звезд.