Содержание менеральных элементов в растениях
Растения способны поглощать из окружающей среды в больших или меньших количествах практически все элементы периодической системы. Между тем для нормального жизненного цикла растительного организма необходима лишь определенная группа основных питательных элементов, функции которых в растении не могут быть заменены другими химическими элементами. В эту группу входят следующие 19 элементов:
Углерод
| С
| Калий
| К
| Цинк
| Zn
|
Водород
| Н
| Кальций
| Са
| Молибден
| Мо
|
Кислород
| О
| Магний
| М8
| Бор
| В
|
азот
| N
| Железо
| Fе
| Хлор
| Cl
|
Фосфор
| Р
| Марганец
| Мn
| (Натрий)
| Nа
|
Сера
| S
| Медь
| Cu
| (Кремний)
| Si
|
|
|
|
| (Кобальт)
| Со
|
Среди этих основных питательных элементов лишь 16 являются собственно минеральными, так как С, Н и О поступают в растения преимущественно в виде СО2, О2 и Н2О. Элементы Na, Si и Со приведены в скобках, поскольку их необходимость для всех высших растений пока не установлена. Натрий поглощается в относительно высоких количествах некоторыми видами сем. Chenopodiaceae (маревых}, в частности свеклой, а также видами, адаптированными к условиям засоления, и в этом случае является необходимым. То же справедливо для кремния, который в особенно больших количествах встречается в соломине злаковых, для риса он является необходимым элементом.
Первые четыре элемента - С, Н. О, N — называют органогенами. Углерод в среднем составляет 45% сухой массы тканей, кислород — 42, водород — 6,5 и азот — 1.5. а все вместе — 95%. Оставшиеся 5% приходятся на зольные вещества: Р, S, К, Са, Мg, Ре, А1, Si, Na и др. О минеральном составе растений обычно судят но анализу золы, остающейся после сжигания органического вещества растений. Содержание минеральных элементов (или их окислов) в растении выражают, как правило, в процентах по отношению к массе сухого вещества или в процентах к массе золы. Перечисленные выше вещества золы относятся к макроэлементам.
Элементы, которые присутствуют в тканях в концентрациях 0,001 % и ниже от сухой массы тканей, называют микроэлементами. Некоторые из них играют важную роль в обмене веществ (Мg, Сu, Zn, Со, Мо, В, С1).
Содержание того или другого элемента в тканях растений непостоянно и может сильно изменяться под влиянием факторов внешней среды. Например. Аl, Ni, F и другие могут накапливаться в растениях до токсическою уровня. Среди высших растений встречаются виды, резко различающиеся по содержанию в тканях такпх элементов, как Na, о чем уже говорилось, и Са, в связи с чем выделяют группы расстении натриефилов, кальциефилов (большинство бобовых, в том числе фасоль, бобы, клевер), кальциефобов (люпин, белоус, щавелек и др.). Эти видовые особенности обусловлены характером почв в местах происхождения и обитания видов, определенной генетически закрепленной ролью, которую укачанные элементы играют в обмене веществ растений.
Наиболее богаты минеральными элементами листья, у которых зола может составлять от 2 до 15% от массы сухого вещества. Минимальное содержание золы (0.4—1%) обнаружено в стволах древесных.
Азот. Для растений азот - дефицитный элемент, Если некоторые микроорганизмы способны усваивать атмосферный азот, то растения могут использовать лишь азот минеральный, а животные — только азот органическою происхождения, да и то не любой. Например, мочевина животным организмом непосредственно не усваивается. В то время как животные относятся к азоту довольно расточительно, выделяя мочевую кислоту. мочевину и др. азотсодержащие вещества, растения почти не выделяют азотистые соединения как продукты отброса и там где то возможно, азотистые соединения заменены на безазотистые вещества. Например, у растений в состав полиеахаридов клеточных оболочек не входят гекеозамины характерные для мукополисахаридов животных и хитина членистоногих и грибов.
При недостатке азота в среде обитания тормозится рост растений, ослабляется образование боковых побегов и кущение у злаков, наблюдается мелколистность. Одновременно уменьшается ветвление корней, но соотношение массы корней и надземной части может увеличиваться. Одно из ранних проявлений азотного дефицит — бледно-зеленая окраска листьев, вызванная ослаблением синтеза хлорофилла. Длительное азотное голодание ведет к гидролизу белков и разрушению хлорофилла прежде всею в нижних, более старых листьях и оттоку растворимых соединений азота к более молодым листьям и почкам роста. Вследствие разрушения хлорофилла окраска нижних листьев в зависимости от вида растения приобретает желто-оранжевые или красные тона, а при сильно выраженном азотном дефиците возможно появление некрозов, высыхание и отмирание тканей. Азотное голодание приводит к сокращению периода вегетативного роста и более раннему созреванию семян.
Фосфор, как и азот, — важнейший элемент питания растений. Он поглощается ими в виде высшего окисла РО4~ и не изменяется, включаясь в органические соединения. В растительных тканях копнет рация фосфора составляет 0,2—1,3% от сухой массы растения Запасы фосфора в пахотном слое почвы относительно невелики, порядка 2,3—4,4 т/га (в пересчете на Р2О5). Из этого количества 2/з приходится на минеральные соли ортофосфорной кислоты (Н3РО4), а '/з ~~ на органические соединения, содержащие фосфор (органические остатки, гумус, фитат и др.). Фитаты составляют до половины органического фосфора почвы. Большая часть фосфорных соединений слабо растворима в почвенном растворе. Это, с одной стороны, снижает потери фосфора из почвы за счет вымывания, но, с другой, -ограничивает возможности использования его растениями. Основной природный источник поступления фосфора в пахотный слой — выветривание почвообразующей породы, где он содержится главным образом в виде апатитов ЗСа3(РО4)2 • СаР2 и др. Трех замещенные фосфорные соли кальция и магния и соли полуторных оксидов железа и алюминия (FеРО4. А1РО4 в кислых почвах) слаборастворимы и малодоступны для растений. Двух замешенные и особенно однозамещенные соли кальция и магния, тем более соли одновалентных катионов и свободная ортофосфорная кислота растворимы в воде и используются растениями как главный источник фосфора в почвенном растворе.
Сера входит в число основных питательных элементов, необходимых для жизни растения. Она поступает в них главным образом в виде сульфата. Ее содержание в растительных тканях относительно невелико и составляет в,2— 1,0% в расчете на сухую массу. Потребность в сере высока у растений, богатых белками, например у бобовых (люцерна, клевер), но особенно сильно она выражена у представителей семейства крестоцветных, которые в больших количествах синтезируют масла.
Недостаточное снабжение растений серой тормозит синтез серосодержащих аминокислот и белков, снижает фотосинтез и скорость роста растений, особенно надземной части. В острых случаях нарушается формирование хлоропласте» и возможен их распад. Симптомы дефицита серы побледнение и пожелтение листьев — похожи на признаки недостатка азота, но сначала появляются у самых молодых лис и, ев. Это показывает, что отток серы из более старых листьев не может компенсировать недостаточное снабжение растений серой через корпи.
Калий — один из самых необходимых элементов минерального питания растений о содержание в тканях составляет среднем 0,5—1.2% в расчете на сухую массу. Долгое время основным источников получения калия служила зола, что нашло отражение в названии элемента ( происходит от слова — тигельная зола). Содержание калия в клетке в 100—1000 раз превышает его уровень во внешней среде. Его гораздо больше в тканях, чем других катионов.
Запасы калия в почве больше содержания фосфора в 8 — 40 раз, а азота — в 5 — 50 раз. В почве калий может находиться в следующих формах: в составе кристаллической решетки минералов, в обменном и необменном состоянии в коллоидных частицах, в составе пожнивных остатков и микроорганизмах, в виде минеральных солей почвенного раствора.
Наилучшим источником питания являются растворимые соли калия (0,5 — 2% от валовых запасов в почве). По мере потребления подвижных форм калия запасы его в почве могут восполняться за счет обменных форм, а при уменьшении последних — за счет необменных, фиксированных форм калия. Попеременное подсушивание и увлажнение почвы, а также деятельность корневой системы растений и микроорганизмов способствуют переходу калия в доступные формы.
В растениях калий в наибольшем количестве сосредоточен в молодых, растущих тканях, характеризующихся высоким уровнем обмена веществ: меристемах, камбии, молодых листьях, побегах, почках. В клетках калий присутствует в основном в ионной форме, он не входит в состав органических соединений, имеет высокую подвижность и поэтому легко регулируется. Передвижению калия из старых в молодые листья способствует натрий, который может замещать его в тканях растений, прекративших рост.
В растительных клетках около 80% калия содержится в вакуолях. Он составляет основную часть катионов клеточного сока. Поэтому калий может вымываться из растений дождями, особенно из старых листьев. Небольшая часть этого катиона (около 1 %) прочно связана с белками митохондрий и хлоропластов. Калий стабилизирует структуру этих органелл. При калиевом голодании нарушается ламеллярно транулярное строение хлоропластов и дезорганизуются мембранные структуры митохондрий. До 20% калия клетки адсорбируется на коллоидах цитоплазмы. На свету прочность связи калия с коллоидами выше, чем в темноте. В ночное время может наблюдаться даже выделение калия через корневую систему растений.
Калий служит основным прогивоионом для нейтрализации отрицательных зарядов неорганических и органических анионов. Именно присутствие калия в значительной степени определяет коллоидно-химические свойства цитоплазмы, что существенно влияет практически на все процессы в клетке. Калий способствует поддержанию состояния гидратации коллоидов цитоплазмы, регулируя ее водоудерживаюшую способность. Увеличение гидратации белков и водоудерживающей способности цитоплазмы повышает устойчивость растений к засухе и морозам.
Кальций. Общее содержание кальция у разных видов растений составляет 5 — 30 мг на 1 г сухой массы. Рас гения по отношению к кальцию деляг на три группы: калъциефилы, калъциефобы и нейтральные виды. Много кальция содержат бобовые, гречиха, подсолнечник, картофель, капуста, конопля, гораздо меньше — зерновые, лен, сахарная свекла. В тканях двудольных растений этого элемента, как правило, больше, чем у однодольных.
Кальций накапливается в старых органах и тканях. Это связано с тем, что транспорт его осуществляется по ксилеме и реутилизация затруднена. При старении клеток или снижении их физиологической активности кальций из цитоплазмы перемещается в вакуоль и откладывается в виде нерастворимых солей щавелевой, лимонной и других кислот. Образующиеся кристаллические включения затрудняют подвижность и возможность повторного использования этого кат Кальций выполняет многообразные функции в обмене веществ клеток и организма в целом. Они связаны с его влиянием на структуру мембран, ионные потоки через них и биоэлектрические явления, на перестройки цитоскелета, процессы поляризации клеток и тканей и др. Кальций активирует ряд ферментных систем клетки: дегидрогеназы (глутаматдегидрогеназа, малатдетидрогеназа, глюкозо-6-фосфагдегидрогеназа. зависимая изоцитратдегидрогеназа), амилазу, аденилат- и аргининкиназы, липазы, фосфатазы. При этом кальций может способствовать агрегации субъединиц белка, служить мостиком между ферментом и субстратом, влиять на состояние аллостерического центра фермента. Избыток кальция в ионной форме угнетает окислительное фосфорилирование и фотофосфорилирование иона.
От недостатка кальция в первую очередь страдают молодые меристематические ткани и корневая система. У делящихся клеток не образуются новые клеточные стенки и в результате возникают многоядерные клетки, характерные для меристем с дефицитом кальция. Прекращается образование боковых корней и корневых волосков, замедляется рост корней. Недостаток кальция приводит к набуханию пектиновых веществ, что вызывает клеточных стенок и разрушение клеток. В результате корни, листья, отдельные участки стебля зашивают и отмирают. Кончики и края листьев вначале белею 1. а затем чернеют, листовые пластинки и скручиваются. На плодах, в запасающих и сосудистых тканях некротические участки.
Магний. По содержанию в растениях магний занимает четвертое место после калия, азота и кальция. У высших растений среднее его содержание в расчете на сухую массу 0.02 — 3.1% у водорослей 3,0 — 3,5%. Особенно мною его в растениях короткого дня — кукурузе, просе, сорго, конопле, а также в картофеле, свекле, табаке и бобовых. 1 кг свежих листьев содержит 300-800 мг магния, из них 30-80 мг (т. е. 1/10 часть) входит в состав хлорофилла. Особенно много магния в молодых клетках и растущих тканях, а также в генеративных органах и запасающих тканях. В зерновках магний накапливается в зародыше, где его уровень в несколько раз превышает содержание в эндосперме и кожуре (для кукурузы соответственно 1,6, 0,04 и 0,19% на сухую массу).
Действие магния на другие участки обмена веществ чаще всего связано с его способностью регулировать работу ферментов и значение его для ряда ферментов уникально. Недостаток магния приводит к уменьшению содержания фосфора в растениях, даже если фосфаты в достаточных количествах имеются в питательном субстрате, тем более, что транспортируется фосфор по растению в основном в органической форме. Поэтому дефицит магния будет тормозить образование фосфорорганических соединений и соответственно распределение фосфора в растительном организме. При недостатке магния нарушается формирование пластид: матрикс хлоропластов просветляется, граны слипаются. Ламеллы стромы разрываются и не образуют единой структуры, вместо них появляется много везикул. При магниевом голодании между зелеными жилками появляются пятна и полосы светло-зеленого, а затем желтого цвета. Края листовых пластинок приобретают желтый, оранжевый, красный или темно-красный цвет, и такая «мраморная» окраска листьев наряду хлорозом служит характерным признаком нехватки магния. На более поздних стадиях магниевого голодания светло-желтые и беловатые полоски отмечаются и на молодых листьях, свидетельствуя о разрушении в них хлоропласте», а затем и каротиноидов, причем зоны листа, прилежащие к сосудам, дольше остаются зелеными. Впоследствии развиваются хлороз и некроз, затрагивая в первую очередь верхушки листьев.
Железо. Среднее содержание железа в растениях составляет 0,02-0,08%. В составе соединений, содержащих гем (все цитохромы, каталаза. и в негемовой форме железо принимает участие в функционировании основных редокс-систем фотосинтеза и дыхания. Вместе с молибденом железо участвует в восстановлении нитратов и фиксации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Железо катализирует также начальные этапы синтеза хлорофилла (образование 8-аминолевулиновой кислоты и прогопорфиринов). Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении листьев (хлороз) и быстром их опадении.
Кремний обнаружен у всех растений. Особенно много его в клеточных стенках. Растения, накапливающие кремний, имеют прочные стебли. Недостаток кремния может задерживать рост злаков (кукуруза, овес, ячмень) и двудольных растений (огурцы, томаты, табак, бобы). Исключение кремния во время репродуктивной стадии вызывает уменьшение количества семян, при этом снижается число зрелых семян. При отсутствии в питательной среде кремния нарушается ультраструктура клеточных органелл.
Алюминий также относится к макроэлементам, в которых нуждаются только некоторые растения. Предполагается, что он имеет большое значение в обмене веществ у гидрофитов. Интересно отметить, что этот катион концентрируют папоротники и чай. При недостатке алюминия у чайного листа наблюдается хлороз, однако высокие концентрации токсичны для расмений. В высоких дозах алюминий связывается в клетках с фосфором, что в итоге приводит к фосфорному голоданию растений.
- Гоу впо «сибирский государственный технологический
- Введение
- Лекция 1. Предмет и задачи физиологии растений
- Методы физиологии растений
- Лекция 2. Структурные компоненты клетки и их физиологические функции
- Лекция 3. Химический состав клетки
- Углеводы
- Функции углеводов в растении важны и разнообразны:
- Моносахариды
- Химические свойства
- Полисахариды Олигосахариды
- Высшие полисахариды
- Белки Общая характеристика и функции белков
- Классификация белков
- Простые белки
- Сложные белки
- Жироподобные вещества
- Лекция 4. Фотосинтез
- Пигменты фотосинтеза
- Химизм фотосинтеза
- Световая фаза фотосинтеза
- Темновая фаза фотосинтеза
- С4 – путь фотосинтеза
- Экология фотосинтеза
- Лекция 5. Дыхание
- Экология дыхания
- Лекция 6. Водный режим растений
- Механизмы передвижения воды по растению
- Транспирация
- Лекция 7. Основы почвенной микробиологии
- Роль микроорганизмов в превращении азотистых веществ
- Фиксация молекулярного азота
- Превращение микроорганизмами углеродсодержащих веществ растительного происхождения
- Лекция 8. Минеральное питание растений
- Содержание менеральных элементов в растениях
- Микроэлементы
- Лекция 9. Превращение органических веществ в растении
- Запасные вещества вегетативных органов древесных растений
- Органические вещества вторичного происхождения
- Превращение органических веществ в семенах
- Лекция 10. Рост и развитие растений
- Гормоны растений
- Как действуют гиббереллины
- Действие цитокининов
- Действие абк.
- Практическое применение этилена
- Использование синтетических регуляторов роста (срр).
- Коррелятивный рост
- Регуляция роста и развития Регуляция светом темпа онтогенеза растений
- Качество и количество света
- Периодичность роста
- Покой семян
- Индивидуальное развитие растений
- Этапы онтогенеза высших растений
- Лекция 11. Устойчивость растений к неблагоприятным условиям среды
- Холодостойкость растений
- Морозоустойчивость растений
- Жароустойчивость растений
- Засухоустойчивость растений
- Влияние загрязнения атмосферы на растения
- Заключение
- Библиографический список Основная литература
- Доплнительная
- Приложение а Перечень ключевых слов