10.2.1.4. Закон сохранения энергии в механических процессах
Механическая энергия подразделяется на два вида: потенциальную и кинетическую. Потенциальная энергия характеризует взаимодействующие тела, а кинетическая — движущиеся. И потенциальная и кинетическая энергии изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля.
Рассмотрим теперь вопрос об изменении энергии при взаимодействии тел, образующих замкнутую систему. Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы не действуют, то при любых взаимодействиях тел сумма кинетической и потенциальной энергий тел остается постоянной. Это утверждение называется законом сохранения энергии в механических процессах.
Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Поэтому закон сохранения энергии можно сформулировать так: полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и упругости, остается постоянной.
Основное содержание закона сохранения энергии заключается не только в установлении факта сохранения полной механической энергии, но и в установлении возможности взаимных превращений кинетической и потенциальной энергий в равной количественной мере при взаимодействии тел.
Закон сохранения полной механической энергии в процессах с участием сил упругости и гравитационных сил является одним из основных законов механики. Знание этого закона упрощает решение многих задач, имеющих большое значение в практической жизни.
Например, для получения электроэнергии широко используется энергия рек. С этой целью строят плотины, перегораживают реки. Под действием сил тяжести вода из водохранилища за плотиной движется вниз по колодцу ускоренно и приобретает некоторую кинетическую энергию. При столкновении быстро движущегося потока воды с лопатками гидравлической турбины происходит преобразование кинетической энергии поступательного движения воды в кинетическую энергию вращательного движения роторов турбины, а затем с помощью электрического генератора — в электрическую энергию.
Механическая энергия не сохраняется, если между телами действуют силы трения. Автомобиль, двигавшийся по горизонтальному участку дороги после выключения двигателя, проходит некоторый путь и под действием сил трения останавливается. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля и асфальта. В результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.
Таким образом, при любых физических взаимодействиях энергия не возникает, а только превращается из одной формы в другую. Этот экспериментально установленный факт называется законом сохранения и превращения энергии.
Источники энергии на земле велики и разнообразны. Когда-то в древности люди знали только один источник энергии — мускульную силу и силу домашних животных. Энергия возобновлялась за счет пищи. Теперь большую часть работы делают машины, источником энергии для них служат различные виды ископаемого топлива: каменный уголь, торф, нефть, а также энергия воды и ветра.
Если проследить «родословную» всех этих разнообразных видов энергии, то окажется, что все они являются энергией солнечных лучей. Энергия окружающего нас космического пространства аккумулируется Солнцем в виде энергии атомных ядер, химических элементов, электромагнитных и гравитационных полей. Солнце, в свою очередь, обеспечивает Землю энергией, проявляющейся в виде энергии ветра и волн, приливов и отливов, в форме геомагнетизма, различного вида излучений (в том числе и радиоактивности недр и т.д.), мускульной энергии животного мира.
Геофизическая энергия высвобождается в виде природных стихийных явлений (вулканизм, землетрясения, грозы, цунами и т.д.), обмена веществ в живых организмах (составляющих основу жизни), полезной работы по перемещению тел, изменению их структуры, качества, передачи информации, запасения энергии в различного рода аккумуляторах, конденсаторах, в упругой деформации пружин, мембран.
Любые формы энергии, превращаясь друг в друга посредством механического движения, химических реакций и электромагнитных излучений, в конце концов переходят в тепло и рассеиваются в окружающее пространство. Это явление проявляется в виде взрывных процессов, горения, гниения, плавления, испарения, деформации, радиоактивного распада. Происходит круговорот энергии в природе, характеризующийся тем, что в космическом пространстве реализуется не только хаотизация, но и обратный ей процесс — упорядочивание структуры, которые наглядно прослеживаются прежде всего в звездообразовании, трансформации и возникновении новых электромагнитных и гравитационных полей, и они снова несут свою энергию новым «солнечным системам». И все возвращается на круги своя.
Закон сохранения механической энергии был сформулирован немецким ученым А. Лейбницем. Затем немецкий ученый Ю.Р. Майер, английский физик Дж. Джоуль и немецкий ученый Г. Гельмгольц экспериментально открыли законы сохранения энергии в немеханических явлениях.
Таким образом, к середине XIX в. оформились законы сохранения массы и энергии, которые трактовались как законы сохранения материи и движения. В начале XX в. оба эти закона сохранения подверглись коренному пересмотру в связи с появлением специальной теории относительности: при описании движений со скоростями, близкими к скорости света, классическая ньютоновская механика была заменена релятивистской механикой. Оказалось, что масса, определяемая по инерциальным свойствам тела, зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Понятие энергии тоже подверглось изменению: полная энергия оказалась пропорциональна массе (Е = mс2). Таким образом, закон сохранения энергии в специальной теории относительности естественным образом объединил законы сохранения массы и энергии, существовавшие в классической механике. По отдельности эти законы не выполняются, т.е. невозможно охарактеризовать количество материи, не принимая во внимание ее движение и взаимодействие.
Эволюция закона сохранения энергии показывает, что законы сохранения, будучи почерпнутыми из опыта, нуждаются время от времени в экспериментальной проверке и уточнении. Нельзя быть уверенным, что с расширением пределов человеческого познания данный закон или его конкретная формулировка останутся справедливыми. Закон сохранения энергии, все более уточняясь, постепенно превращается из неопределенного и абстрактного высказывания в точную количественную форму.
- Серия «Высшее образование»
- Содержание
- Тема 1. Предмет естествознания. Закономерности, основные этапы, история, панорама и тенденции развития 13
- Тема 2. Естественнонаучная и гуманитарная культуры 40
- Тема 7. Хаос и порядок. Порядок и беспорядок в природе 71
- Тема 8. Принципы дополнительности, суперпозиции, относительности 80
- Тема 9. Принципы симметрии 82
- Тема 10. Динамические и статистические закономерности в природе 104
- Тема 11. Химические системы. Энергетика химических процессов. Реакционная способность веществ 114
- Тема 12. Особенности биологического уровня организации материи 120
- Тема 13. Принципы эволюции, воспроизводства и развития живых систем 128
- Тема 14. Отражение как всеобщее свойство материи 141
- Тема 15. Пространство и время 154
- Тема 16. Самоорганизация в живой и неживой природе 172
- Тема 17. Учение в.И. Вернадского о биосфере и ноосфере 193
- Тема 18. Экология. Законы экологии 217
- Тема 19. Социально-этические и гуманистические принципы биологического познания 237
- Тема 20. Человек: физиология, здоровье, эмоции, творчество, работоспособность 248
- Введение
- Тема 1. Предмет естествознания. Закономерности, основные этапы, история, панорама и тенденции развития
- 1.1. Предмет естествознания. Основная терминология
- 1.2. Основные закономерности развития естествознания
- 1.2.1 .Необходимость и случайность
- 1.2.2. Причины, от которых зависит развитие науки
- 1.2.3. Роль практики в развитии естествознания
- 1.2.4. Относительная самостоятельность в развитии науки
- 1.2.5. Преемственность в развитии идей и принципов естествознания
- 1.2.6. Критика и борьба мнений в науке
- 1.2.7. Интернациональный характер развития науки
- 1.2.8. Взаимодействие естественных наук
- 1.2.9. Дифференциация и интеграция наук
- 1.2.10. Социальные функции естествознания
- 1.3. Основные этапы развития естествознания
- 1.3.1. Натурфилософия как первая историческая форма знания
- 1.3.1.1. Естествознание VII-VI вв. До н. Э.
- 1.3.1.2. Учение Гераклита об огне в виде первовещества
- 1.3.1.3. Естествознание V в. До н. Э. Учения философов Эмпедокла и Анаксагора
- 1.3.1.4. Естествознание IV в. До н.Э.
- 1.3.1.5. Выделение медицины из натурфилософии и учение Гиппократа
- 1.3.1.6. Естествознание IV-III вв. До н. Э. Учения Платона, Аристотеля, Теофраста
- 1.3.1.7. Философия Эпикура и Лукреция как завершение материалистических воззрений Древней Греции
- 1.3.1.8. Средневековье и эпоха Возрождения
- 1.3.1.9. Естествознание XVI-XVII вв.
- 1.3.1.10. Естествознание XVIII в.
- 1.3.1.11. Выдающиеся открытия XIX в. И конец натурфилософии
- 1.3.2. «Русский космизм»
- 1.3.3. Кризис в физике и нарушение прежних представлений
- 1.3.4. Ленинский принцип неисчерпаемости материи
- 1.3.4.1. Онтологическая сторона неисчерпаемости материи
- 1.3.4.2. Гносеологическая сторона неисчерпаемости материи
- 1.3.5. Новейшая революция в естествознании
- Тема 2. Естественнонаучная и гуманитарная культуры
- 2.1. Научная теория. Основная терминология
- 2.2. Содержание и структура естественнонаучной теории
- 2.2.1. Структура естественнонаучной теории
- 2.2.2. Основные способы построения естественнонаучной теории
- 2.3. Культура
- 2.4. Естественная и гуманитарная культуры
- Тема 3. Корпускулярная и континуальная концепции описания природы
- 3.1. Атомизм древности
- 3.2. Механистический атомизм
- 3.3. Сокрушительный удар по принципам механицизма
- 3.4. Предпосылки для создания более высокого уровня развития атомизма
- 3.5. Квантовая теория строения атома
- 3.6. Существенные особенности атомизма XX в.
- 3.7. Континуальная концепция
- 3.8. Корпускулярно-волновой дуализм
- 3.9. Элементарные частицы
- 3.10. Выводы
- Тема 4. Структурные уровни организации материи. Микро-, макро- и мегамиры
- 4.1. Материя. Всеобщие атрибуты материи
- 4.2. Структура и системная организация материи
- 4.2.1. Структура материи
- 4.2.2. Структурная бесконечность материи
- 4.3. Системная организация как атрибут материи
- 4.4. Структурные уровни организации материи
- 4.4.1. Микро-, макро- и мегамиры
- 4.4.2. Структурные уровни различных сфер
- Тема 5. Структура и ее роль в организации живых систем
- 5.1. Система и целое
- 5.2. Часть и элемент
- 5.2.1. Соотношение категорий часть и элемент
- 5.2.2. Взаимодействие части и целого
- 5.3. Диалектическое единство дифференциации и интеграции частей
- 5.4. Взаимосвязь единичного и общего
- 5.5. Интеграция частей
- 5.5.1. Свойства интеграции
- 5.5.2. Три механизма сборки
- 5.5.2.1. Механический детерминизм
- 5.5.2.2. Связь по типу корреляции
- 5.5.2.3. Связь по типу субординации
- Тема 6. Неопределенность в мире. Принцип неопределенности
- 6.1. Неустранимость неопределенности
- 6.2. Неопределенностные процессы в искусстве
- 6.2.1, Кубизм
- 6.2.2. Футуризм
- 6.2.3. Абстракционизм
- 6.2.4. Экспрессионизм
- 6.2.5. Сюрреализм
- 6.2.6. Импрессионизм
- 6.2.7. Постимпрессионизм
- 6.3. Неопределенность в биологии
- 6.4. Неопределенность в проблемах кибернетики и компьютерной связи
- 6.5. Принцип неопределенности
- 6.6. Неопределенность и случай — реальные компоненты развития
- 6.7. Сферы проявления неопределенности. Виды неопределенности
- 6.8. Парадокс неопределенности
- Тема 7. Хаос и порядок. Порядок и беспорядок в природе
- 7.1. Хаос
- 7.1.1. Этимология понятия «хаос»
- 7.1.2. Хаос и мифы
- 7.1.3. Примеры хаоса
- 7.1.4. Социологизация понятий порядка и хаоса
- 7.1.5. Причины хаоса
- 7.2. Пространственная модель соотношения порядка и хаоса
- 7.3. Поиск механизмов объяснения порядка и хаоса
- 7.4. Роль энтропии как меры хаоса
- 7.5. Порядок
- 7.5.1. Математизированный порядок
- 7.5.2. Организмический стиль
- 7.5.3. Психологическая версия порядка
- 7.6. Диалектическое единство 0-мерной точки
- 7.7. Выводы
- Тема 8. Принципы дополнительности, суперпозиции, относительности
- 8.1. Принцип дополнительности
- 8.2. Принцип суперпозиции
- 8.3. Принципы относительности
- 8.3.1. Принцип относительности Галилея
- 8.3.2. Принцип относительности Эйнштейна
- 8.3.3. Теория относительности Эйнштейна
- Тема 9. Принципы симметрии
- 9.1. Категории симметрии
- 9.1.1 Симметрия
- 9.1.1.1. История возникновения категорий симметрии
- 9.1.1.2. Симметрия в архитектуре
- 9.1.1.3. Симметрия в технике
- 9.1.2. Асимметрия
- 9.1.2.1. Асимметрия в живой природе
- 9.1.2.2. Асимметрия как разграничивающая линия между живой и неживой природой
- 9.1.2.3. Опыты Пастера и Кюри
- 9.1.3. Дисимметрия
- 9.1.4. Антисимметрия
- 9.2. Операции симметрии
- 9.2.1. Отражение в плоскости симметрии
- 9.2.2. Поворотная симметрия
- 9.2.3. Отражение в центре симметрии
- 9.2.4. Трансляция, или перенос фигуры на расстояние
- 9.2.5. Винтовые повороты
- 9.2.6. Симметрия и законы роста
- 9.2.7. Симметрия подобия
- 9.3. Симметрия в познании
- 9.4. Пространственно-временные и внутренние принципы симметрии
- 9.4.1. Пространственно-временные • принципы симметрии
- 9.4.2. Внутренние принципы симметрии
- 9.5. Пифагор и пифагорейский союз
- 9.6. Царство чисел
- 9.7. Золотое сечение—закон проявления гармонии в природе
- 9.7.1. Числа Фибоначчи
- 9.7.2. Золотое сечение в астрономии
- 9.7.3. Золотое сечение в искусстве и музыке
- 9.7.4. Обнаружение золотого сечения в различных областях внешнего мира
- 9.7.5. Выводы
- Тема 10. Динамические и статистические закономерности в природе
- 10.1. Проблемы детерминизма и причинности
- 10.2. Фундаментальные физические законы
- 10.2.1. Законы сохранения физических величин
- 10.2.1.1. Закон сохранения массы
- 10.2.1.2. Закон сохранения импульса
- 10.2.1.3. Закон сохранения заряда
- 10.2.1.4. Закон сохранения энергии в механических процессах
- 10.2.1.5. Законы сохранения в микромире
- 10.3. Динамические и статистические законы
- 10.4. Закон возрастания энтропии
- 10.4.1. Первый закон термодинамики и невозможность создания вечного двигателя первого рода
- 10.4.2. Второй закон термодинамики и невозможность создания вечного двигателя второго рода
- 10.5. Принцип минимума диссипации энергии
- 10.6. Редукционизм
- Тема 11. Химические системы. Энергетика химических процессов. Реакционная способность веществ
- 11.1. Формы движения материи
- 11.2. Вещества и их свойства
- 11.3. Энергетические эффекты химических реакций
- 11.4. Скорости химических реакций
- 11.5. Катализаторы химических реакций
- 11.6. Равновесие в химических реакциях
- 11.7. Принцип ле шателье
- 11.8. Модель, объясняющая равновесие
- Тема 12. Особенности биологического уровня организации материи
- 12.1. Основные этапы становления идеи развития в биологии
- 12.2. Концепции происхождения живого
- 12.2.1. Идея самопроизвольного происхождения жизни
- 12.2.2. Опыты Пастера, доказывающие происхождение живого от живого
- 12.2.3. Гипотеза занесения живых существ на Землю из космоса
- 12.2.4. Гипотеза Опарина
- 12.2.5. Современные концепции происхождения жизни
- 12.3. Биоэнергоинформационный обмен
- 12.4. Биологическая вечность жизни
- 12.5. Метаболизм
- Тема 13. Принципы эволюции, воспроизводства и развития живых систем
- 13.1. Эволюционная теория дарвина
- 13.1.1. Изменчивость
- 13.1.2. Наследственность
- 13.1.3. Связь между наследственностью и изменчивостью
- 13.1.4. Естественный отбор
- 13.2. Классы механизмов эволюции
- 13.2.1. Адаптационные механизмы
- 13.2.2. Катастрофические, или пороговые, механизмы эволюции
- 13.2.3. Принцип а. Пуанкаре. Закон дивергенции
- 13.3. Три период формирования эволюционной теории дарвина
- 13.4. Основные свойства развития
- Тема 14. Отражение как всеобщее свойство материи
- 14.1. Отражение и движение
- 14.2. Внутренние и внешние стороны отражения
- 14.3. Отражение— всеобщее свойство материи
- 14.4. Основные свойства отражения
- 14.4.1. Аккумуляция
- 14.4.2. Избирательность
- 14.4.3. Опережающее отражение действительности
- 14.4.4. Адекватность
- 14.5. Адаптация. Проблемы адаптации живого и принцип отражения
- 14.5.1. Адаптация
- 14.5.2. Проблемы адаптации живого и принцип отражения
- 14.5.3. Взаимосвязь эволюции, адаптации и организации живого
- 14.5.4. Исследование случайных и направленных процессов повышения приспособляемости
- 14.6. Концепция адаптационного синдрома, или стресса
- 14.6.1. Стадии адаптационного синдрома, или стресса
- 14.6.1.1. Реакция тревоги
- 14.6.1.2. Резистивность, или сопротивление
- 14.6.1.3. Истощение
- 14.6.1.4. Стресс и адаптационная энергия
- 14.6.1.5. Стресс и дистресс
- 14.6.2. Формирование естественного кодекса поведения
- 14.6.2.1. Связь между работой, стрессом и старением
- 14.6.2.2. Приемы, сводящие психическую ранимость к минимуму
- 14.6.3. Выводы
- Тема 15. Пространство и время
- 15.1. Понятия пространства и времени
- 15.2. Развитие представлений о пространстве и времени
- 15.3. Общие свойства пространства и времени
- 15.4. Специфические свойства пространства и времени
- 15.5. Пространство и время в микро-, макро- и мегамире
- 15.5.1. Трехмерность пространства
- 15.5.2. N-мерность пространства
- 15.5.3. Социальное пространство
- 15.6. Время
- 15.6.1.1. Длительность времени
- 15.6:1.2. Прерывность и непрерывность.
- 15.6.1.3. Вечность времени
- 15.6.1.4. Необратимость времени
- 15.6.1.5. Одномерность времени
- 15.6.2. Проекции времени на сознание человека
- 15.6.3. Социальное время
- 15.6.4. Идеи и гипотезы профессора н.А. Козырева
- Тема 16. Самоорганизация в живой и неживой природе
- 16.1. Сущность проблем самоорганизации в свете современной науки
- 16.1.1. Связь проблем самоорганизации материи с кибернетикой
- 16.1.1.1. Кибернетика и ее принципы
- 16.1.1.2. Самоорганизующиеся системы
- 16.1.1.3. Связь кибернетики с процессом самоорганизации
- 16.1.2. Синергетика как новое направление междисциплинарных исследований
- 16.1.2.1. Понятие синергетики
- 16.1.2.2. Отличие синергетики от кибернетики
- 16.1.2.3. История становления синергетики как науки
- 16.1.2.4. Связь синергетики с другими науками
- 16.2. Самоорганизация
- 16.2.1. Структурные компоненты и свойства процесса самоорганизации
- 16.2.1.1. Структурные компоненты процесса самоорганизации
- 16.2.1.2. Свойства самоорганизующейся системы
- 16.2.1.3. Механизм, обеспечивающий организационный процесс
- 16.3. Характеристики процесса самоорганизации
- 16.3.1. Гомеостаз
- 16.3.2. Обратная связь
- 16.3.3. Информация
- 16.3.3.1. Этимология понятия «информация»
- 16.3.3.2. Роль и место информации
- 16.3.3.3. Понятие ценности информации
- 16.3.3.4. Информация и память
- 16.3.3.5. Две точки зрения на информацию
- 16.4. Роль синергетики в становлении нового понимания
- 16.4.1. Синергетика и трактовка единства мира в восточной философии
- 16.4.2. Синергетика и глобальный эволюционизм
- 16.4.2.1. Важнейшие достижения современной науки в познании структуры и развития материи
- 16.4.2.2. Инфляционная теория
- 16.4.2.3. Модель Большого взрыва
- 16.4.2.4. Различные ветви эволюции
- 16.4.2.5. Самоорганизация материи на Земле
- 16.5. Развитие научного знания как синергетический процесс
- 16.6. Синергетика и социальное развитие
- 16.7. Синергетика и современное видение мира
- Тема 17. Учение в.И. Вернадского о биосфере и ноосфере
- 17.1. Судьба научных идей в.И. Вернадского
- 17.1.1. Учение в.И. Вернадского
- 17.1.2. Значение идей в.И. Вернадского
- 17.2. Биосфера как живая саморегулирующаяся система
- 17.2.1. Возникновение учения о биосфере
- 17.2.2. Основные идеи в.И. Вернадского по проблемам биосферы
- 17.2.3. Составные части биосферы
- 17.2.3.1. Атмосфера как составная часть биосферы
- 17.2.3.2. Гидросфера — водная оболочка Земли
- 17.2.3.3. Литосфера — поверхность твердого тела Земли
- 17.2.4. Биосфера как саморегулирующаяся система
- 17.3. Взаимодействие косного и живого веществ
- 17.3.1. Живое вещество
- 17.3.2. Косное и живое вещества
- 17.3.2.1. Круговорот органического вещества
- 17.3.2.2. Формирование и эволюция биосферы
- 17.4. Многообразие живых организмов— основа организации и устойчивости биосферы
- 17,4.1. Распределение живого вещества
- 17.4.2. Классификация живого вещества
- 17.4.3. Миграция и распределение живого вещества
- 17.4.4. Постоянство биомассы живого вещества
- 17.4.5. Функции живого вещества в биосфере Земли
- 17.5. Факторы, свидетельствующие в пользу земного происхождения жизни
- 17.6. Космопланетарный характер биосферы
- 17.6.1. Этап «химической эволюции»
- 17.6.2. Природно-радиационный фон
- 17.6.3. Живое вещество как геологическая сила
- 17.6.4. Влияние магнитных полей на космический характер биосферы
- 17.6.5. Компенсаторно-защитные функции биосферы
- 17.7. Учение в.И. Вернадского о преобразовании биосферы в ноосферу
- 17.7.1. Ноосфера — сфера Разума
- 17.7.1.1. Условия, необходимые для становления и существования ноосферы
- 17.7.1.2. Мировоззренческий смысл понятия «ноосфера»
- 17.7.1.3. Методологический смысл понятия «ноосфера»
- 17.7.2. Ноосфера и развитие общества
- 17.8. Единая картина развития мира
- 17.8.1. Биосфера и человек — самоорганизующиеся целостности
- 17.8.2. Позиция универсального эволюционизма
- 17.8.3. Ноосферный гуманизм и проблемы экологии
- Тема 18. Экология. Законы экологии
- 18.1. Экология
- 18.2. Законы экологии
- 18.2.1. Законы экологии Коммонера
- 18.2.2. Второе начало термодинамики и экология
- 18.2.3. Взаимопронизывающие уровни метасистем
- 18.2.3.1. Уровень «человек — воздух»
- 18.2.3.2. Уровень «человек — вода»
- 18.2.3.3. Уровень «человек — почва»
- 18.2.4. Анализ законов экологии
- 18.2.5. Дополнительные законы экологии
- 18.3. Проблема рационального природопользования
- 18.3.1. Принципы охраны природы
- 18.3.2. Принципы защиты биосферы
- 18.3.3. Мероприятия по охране природы
- 18.3.3.1. Охрана земель и недр
- 18.3.3.2. Охрана воды
- 18.3.3.3. Охрана воздушной среды
- 18.3.3.4. Шумовые загрязнения
- 18.3.3.5. Охрана растительности
- 18.3.3.6. Охрана животных
- 18.4. Закон необходимого разнообразия в экологии
- 18.4.1. Проблема «человек — Вселенная»
- 18.4.2. Экология и культура
- 18.4.3. Экология, право и мораль
- 18.5. Биоэтика
- 18.6. Ресурсная и биосферная модели развития
- 18.6.1. Ресурсная модель
- 18.6.2. Биосферная модель
- 18.6.3. Виды воздействия на биосферу
- 18.6.3.1. Сравнительная оценка разрушительного воздействия на биосферу различных стран
- 18.7. Модель устойчивой мировой системы
- 18.8. Прогнозы «римского клуба»
- Тема 19. Социально-этические и гуманистические принципы биологического познания
- 19.1. Социология и этика биологического познания
- 19.2. Генетика
- 19.2.1. Законы Менделя
- 19.2.2. Развитие генетики
- 19.2.3. Основные понятия и термины современной генетики
- 19.2.3.1. Механизм наследственности
- 19.2.3.2. Формы изменчивости
- 19.2.3.3. Мутации
- 19.3. Развитие нервной системы
- 19.4. Генная инженерия
- 19.5. Программа «геном человека»
- Тема 20. Человек: физиология, здоровье, эмоции, творчество, работоспособность
- 20.1. Человек
- 20.2. Экология человека и медицина
- 20.2.1. Здоровье человека
- 20.2.2. Проблема болезни и здоровья
- 20.2.3. Единство человека и природы
- 20.2.4. Валеология — новая наука о здоровье души и тела
- 20.2.5. Валеологические уровни здоровья
- 20.3. Эмоции, творчество, работоспособность
- 20.3.1. Эмоции
- 20.3.1.1. Приспособительный характер эмоций
- 20.3.1.2. Ориентировочный инстинкт эмоций
- 20.3.1.3. Виды эмоций
- 20.3.1.4. Эмоции и общественное сознание человека
- 20.3.2. Творчество
- 20.3.3. Работоспособность
- 20.3.4. Взаимосвязь здоровья, эмоций, творчества, работоспособности
- 20.3.5. Самоактуализирующиеся личности
- 20.4. Сознание
- 20.4.1. Естественнонаучные данные о мозге человека
- 20.4.2. Задачи мозга
- 20.4.3. Интеллект личности
- 20.4.4. Информация и мозг
- 20.4.5. Исследования в области человеческого мозга
- 20.4.6. Моделирование функций человеческого мозга
- 20.5. Идея целостности
- Приложение
- Тема 2. Естественнонаучная и гуманитарная культуры
- Тема 10. Динамические и статистические закономерности в природе
- Тема 17. Учение в.И. Вернадского о биосфере и ноосфере
- Тема 18. Экология. Законы экологии
- Тема 19. Социально-этические и биологические
- Тема 20. Человек: физиология, здоровье, творчество, эмоции, работоспособность
- Темы семинарских занятий
- Тема 1. Предмет естествознания. Закономерности,
- Тема 2. Естественнонаучная и гуманитарная культуры
- Тема 3. Корпускулярная и континуальная концепции описания природы
- Тема 9. Принципы симметрии и асимметрии
- Тема 12. Особенности биологического уровня организации материи
- Тема 13. Принципы эволюции, воспроизводства и развития живых систем
- Тема 14. Отражение и его роль в организации развивающейся системы
- Тема 15. Пространство и время. Принципы относительности. Необратимость времени
- Тема 16. Самоорганизация в живой и неживой природе
- Тема 17. Учение в.И. Вернадского о биосфере и ноосфере
- Тема 18. Экология. Законы экологии
- Тема 19. Социально-этические и гуманистические
- Тема 20. Человек: физиология, здоровье, творчество, эмоции, работоспособность
- Тема 1. Предмет естествознания.
- Тема 2. Естественнонаучная и гуманитарная культуры
- Тема 3. Корпускулярная и континуальная концепции описания природы
- Тема 9. Принципы симметрии и асимметрии
- Тема 12. Особенности биологического уровня организации материи
- Тема 17. Учение в.И. Вернадского о биосфере и ноосфере
- Тема 18. Экология. Законы экологии
- Тема 19. Социально-этические и гуманистические
- Тема 20. Человек: физиология, здоровье, творчество, эмоции, работоспособность
- Оглавление
- Тема 1. Предмет естествознания.
- Тема 2. Естественнонаучная и гуманитарная культуры
- Тема 7. Хаос и порядок. Порядок и беспорядок в природе
- Тема 8. Принципы дополнительности, суперпозиции, относительности
- Тема 9. Принципы симметрии
- Тема 10. Динамические и статистические закономерности в природе
- Тема 11. Химические системы. Энергетика химических процессов. Реакционная способность веществ
- Тема 12. Особенности биологического уровня организации материи
- Тема 13. Принципы эволюции, воспроизводства и развития живых систем
- Тема 14. Отражение как всеобщее свойство материй
- Тема 15. Пространство и время
- Тема 16. Самоорганизация в живой и неживой природе
- Тема 17. Учение в.И. Вернадского о биосфере и ноосфере
- Тема 18. Экология. Законы экологии
- Тема 19. Социально-этические
- Тема 20. Человек: физиология, здоровье, эмоции, творчество, работоспособность