logo search
Лекции / Концепции современного естествознания

19.2.2. Развитие генетики

В 1909 г. В. Иогансон (1857—1927) ввел важное разграничение между фенотипом и генотипом. Фенотип — это совокупность всех внешних наблюдаемых нами признаков организма: морфологических, физиологических, биохимических, гистологических, анатомических, поведенческих и т.п. Генотипом называется передающаяся по наследству генетическая основа всех этих признаков (генетическая конституция особи). Генотип — это совокупность всех генов одного организма. Генотип — это не механическая сумма генов, это система взаимодействующих генов. На протяжении жизни организма его фенотип может изменяться, однако генотип остается неизменным.

В 1902 г. два исследователя — У.С. Саттон в США и Т. Боверн в Германии — независимо друг от друга высказали предположение, что гены находятся в хромосомах. Эта концепция получила название хромосомной теории наследственности. Две хромосомы, образующие одну пару, называются гомологическими, принадлежащие к разным парам — негомогенными хромосомами.

По современным данным науки, хромосомы ядерного вещества представляют собой гигантские полимерные молекулы, состоящие из нитей нуклеиновых кислот и небольшого количества белка. Каждая пара хромосом имеет определенный набор генов, контролирующих появление того или иного признака. Гены являются носителями наследственности. Их существование, расположение в хромосомах определяются посредством изучения распределения признаков в потомстве от скрещивания особей с альтернативными проявлениями этих признаков.

В 10-х гг. XX в. Т.Х. Морган (1866-1945) создал школу. Работы Моргана и его школы (Г. Дж. Меллер, А.Г. Стертевант и др.) обосновали хромосомную теорию наследственности. Установление закономерности расположения генов в хромосомах способствовало выяснению цитологических механизмов законов Менделя и разработке теоретических основ теории естественного отбора. В 1933 г. Т.Х. Морган был удостоен Нобелевской премии за эти разработки.

В 20-е и 30-е гг. важную роль в развитии генетики сыграли работы Н.И. Вавилова, Н.К. Кольцова, А.С. Серебровского и других советских ученых.

Изучение явлений наследственности на клеточном уровне позволило установить взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления и созревания половых клеток. Это был фактически второй этап развития генетики.

Становление этой науки в нашей стране пережило сложный период. Долгое время генетика отвергалась официальной наукой. «Менделизм-морганизм» был провозглашен в СССР лжеучением, последователи его преследовались. Затем наступило время, когда генетику наконец-то признали, приняв основные положения одного из самых удивительных учений, продвигающих вперед человеческую цивилизацию.

В 40-х — начале 50-х гг. была выяснена химическая природа гена. Гены представляют собой молекулы дезок-сирибонуклеиновой кислоты (ДНК) — высокополимерного природного соединения, содержащегося в ядрах клеток живых организмов. ДНК — носитель генетической информации. Расшифровка структуры ДНК и механизма ее самоудвоения позволила установить, что все разнообразие живого мира кодируется на нитях ДНК, посредством чего записывается информация о последовательности аминокислот в белке. Всего известно 20 аминокислот, различные вариации из которых и определяют все разнообразие белков в живой материи.

Одним из наиболее важных открытий всех времен было установление в 1953 г. Д, Уотсоном и Ф. Криком модели пространственной структуры ДНК — двойной спирали: молекулы ДНК имеют двухнитчатую структуру и обе параллельно идущие нити свернуты спиралью. Впоследствии это открытие было тщательно проверено, подтверждено (молекулы ДНК ученые сумели увидеть в мощные электронные микроскопы с увеличением в 150-200 тысяч раз в отличие от хромосом, строение которых можно рассмотреть в обычный микроскоп) и позволило объяснить многие свойства ДНК и биологические функции. В 1962 г. за эти исследования им была присуждена Нобелевская премия.

Генетика включает ряд отраслей, в том числе по объектам исследования:

? генетика микроорганизмов;

? генетика растений;

? генетика животных;

? генетика человека.

Показав, что наследственность и изменчивость основываются на преемственности и видоизменении сложных внутриклеточных структур, генетика внесла важный вклад в познание картины мира и доказательство взаимосвязи физико-химических и биологических форм организации материи. Генетика имеет большое значение для медицины, тесно связана с эволюционным учением, цитологией, молекулярной биологией, селекцией.