Биосинтез холестерола
Биосинтез холестерола происходит в эндоплазматическом ретикулуме. Источником всех атомов углерода в молекуле является ацетил-SКоА, поступающий сюда из митохондрий в составе цитрата, также как при синтезе жирных кислот. При биосинтезе холестерола затрачивается 18 молекул АТФ и 13 молекул НАДФН.
Образование холестерола идет более чем в 30 реакциях, которые можно сгруппировать в несколько этапов.
1. Синтез мевалоновой кислоты.
Первые две реакции синтеза совпадают с реакциями кетогенеза, но после синтеза 3-гидрокси-3-метилглутарил-SКоА вступает в действие фермент гидроксиметил-глутарил-SКоА-редуктаза (ГМГ-SКоА-редуктаза), образующая мевалоновую кислоту.
2. Синтез изопентенилдифосфата. На этом этапе при использовании АТФ мевалоновая кислота трижды фосфорилируется. Затем промежуточный продукт декарбоксилируется и дефосфорилируется с получением изопентенилдифосфата.
3. После объединения трех молекул изопентенилдифосфата (если не считать промежуточных превращений) синтезируется фарнезилдифосфат.
4. Синтез сквалена происходит при связывания двух остатков фарнезилдифосфата.
5. После сложных реакций линейный сквален циклизуется в ланостерол.
6. Удаление лишних метильных групп, восстановление и изомеризация молекулы приводит к появлению холестерола.
Регуляция
· Ингибиторы синтеза холестерина (ингибиторы 3-гидрокси-3- метилглутарил коэнзим А-редуктазы; статины): Ловастатин, Мевастатин ,Правастатин,Флувастатин ,Симвастатин, Аторвастатин
Биосинтез жирных кислот
Биосинтез жирных кислот наиболее активно происходит в цитозоле клеток печени, кишечника, жировой ткани в состоянии покоя или после еды.
Условно можно выделить 4 этапа биосинтеза:
1. Образование ацетил-SКоА из глюкозы, других моносахаров или кетогенных аминокислот.
2. Перенос ацетил-SКоА из митохондрий в цитозоль:
· может быть в комплексе с карнитином, подобно тому как переносятся внутрь митохондрии высшие жирные кислоты, но здесь транспорт идет в другом направлении,
· обычно в составе лимонной кислоты, образующейся в первой реакции ЦТК.
Поступающий из митохондрий цитрат в цитозоле расщепляется АТФ-цитрат-лиазой до оксалоацетата и ацетил-SКоА.
Образование ацетил-SКоА из лимонной кислоты
Оксалоацетат в дальнейшем восстанавливается до малата, и последний либо переходит в митохондрии (малат-аспартатный челнок), либо декарбоксилируется в пируват малик-ферментом ("яблочный" фермент).
3. Образование малонил-SКоА из ацетил-SКоА.
Карбоксилирование ацетил-SКоА катализируется ацетил-SКоА-карбоксилазой, мульферментным комплексом из трех ферментов.
Образование малонил-SКоА из ацетил-SкоА
4. Синтез пальмитиновой кислоты.
Осуществляется мультиферментным комплексом "синтаза жирных кислот" (синоним пальмитатсинтаза) в состав которого входит 6 ферментов и ацил-переносящий белок (АПБ).
Ацил-переносящий белок включает производное пантотеновой кислоты – 6-фосфопантетеин (ФП), имеющий HS-группу, подобно HS-КоА. Один их ферментов комплекса, 3-кетоацил-синтаза, также имеет HS-группу в составе цистеина. Взаимодействие этих групп обусловливает начало и продолжение биосинтеза жирной кислоты, а именно пальмитиновой кислоты. Для реакций синтеза необходим НАДФН.
Регуляция
Скорость синтеза жирных кислот определяется как активностью регуляторного фермента - ацетил-КоА-карбоксилазы, так и зависит от ряда других факторов. Активность ацетил-КоА-карбоксилазы регулируется несколькими механизмами:
· после еды в абсорбтивный период под действием гормона инсулина активируется фермент фосфатаза, который переводит ацетил-КоАкарбоксилазу в дефосфорилированную активную форму. Цитрат активирует ассоциацию дефосфорилированных протомеров, и фермент становится активным .
· При голодании (под действием глюкагона) и при физической работе (под действием адреналина) фермент фосфорилируется и становится неактивным.
Инсулин не только активирует регуляторный фермент ацетил-КоАкарбоксилазу, но и индуцирует его синтез и синтез ряда других ферментов, участвующих в превращении продуктов катаболизма глюкозы в жирные кислоты. Поэтому длительное избыточное потребление углеводов активирует синтез жирных кислот и жиров, что ведет к ожирению;
Биосинтез триглицеридов
Синтез триацилглицеролов (липогенез) заключается в дефосфорилировании фосфатидной кислоты, полученной из глицерол-3-фосфата, и присоединении ацильной группы.
Реакции синтеза ТАГ из фосфатидной кислоты
Если синтез ТАГ происходил в печени, то они эвакуируются из нее в ткани, имеющие на эндотелии своих капилляров липопротеинлипазу (транспорт ТАГ в крови). Транспортной формой служат ЛПОНП. Строго говоря, клеткам организма нужны только жирные кислоты, все остальные компоненты ЛПОНП не являются необходимыми.
Регуляция
43. Перекисное окисление липидов и его регуляция. Атерогенные липиды.
Под ПОЛ понимают окисление посредством присоединения двух атомов кислорода к углероду с образованием липидных перекисей, липидных перекисных радикалов и других соединений. Непосредственным субстратом ПОЛ могут быть ненасыщенные жирные кислоты, которыми богат липидный слой клеточных и субклеточных мембран.
Перекисное окисление липидов включает в себя несколько стадий:
1. Инициация.
· В момент инициации, например, гидроксил-радикалом атакуется метиленовая группа, расположенная между двойными связями, и выбивается атом водорода, восстанавливающий гидроксил-радикал до воды. Далее в жирной кислоте происходит перестановка двойной связи, смещение радикальной группы и взаимодействие ее с кислородом. В результате образуется липопероксильный радикал.
2. Развитие.
3. Разветвление.
· Дальнейшее взаимодействие полученного липопероксильного радикала с соседними жирными кислотами приводит к его нейтрализации и появлению новых липоперекисных радикалов, т.е. к развитию линейной цепной реакции с появлением новых окисленных жирных кислот.
· Кроме линейного развития, может происходить разветвление реакции за счет получения гидроперекисью электронов от каких-либо металлов или при воздействии излучения.
- 1. Транспорт лекарственных веществ системой крови и лимфы (макротранспорт) и через биологические мембраны (микротранспорт).
- 2. Метаболизм лекарственных веществ, его фазы, суть метаболических превращений в каждой фазе.
- 1) Метаболическая трансформация
- 2) Биосинтетические реакции
- 3. Биотрансформация как первая фаза метаболизма лекарственных веществ в организме. Ферменты первой фазы метаболизма.
- 1) Окислительно-восстановительные реакции
- 2)Гидролиз
- 4. Цитохром р-450, его свойства. Индукторы и ингибиторы цитохрома р-450
- 5. Конъюгация как вторая фаза метаболизма лекарственных веществ в
- 6. Механизм действия лекарственных веществ. Понятие мишени для лекарственных веществ. Роль мембранных белков и липидов в механизме действия лекарственных веществ.
- 8. Типы рецепторов плазматических мембран: рецепторы-ионные каналы, рецепторы, сопряженные с g-белками, рецепторы-протеинкиназы. Их участие в развитии ответа клетки на лекарственные вещества.
- 9. Вторичные мессенджеры. Образование и деградация. Их роль в развитии ответа клетки на лекарственные вещества.
- 10. Внутриклеточные рецепторы. Их участие в ответе клетки на лекарственные вещества.
- 11. Биохимия холинергического синапса. Биосинтез, депонирование и выброс ацетилхолина, регуляторы этих процессов.
- 12. Гидролиз ацетилхолина на холинэстеразе, его механизм. Ингибиторы холинэстеразы, их типы. Реактиваторы холинэстеразы.
- 13. Холинэстеразы, их типы, локализация. Строение и функционирование ацетилхолинэстеразы.
- Строение
- Механизм действия
- 16. Катехоламины, их представители, особенности химической структуры, их функции в организме.
- 17. Биохимия адренергического синапса. Депонирование, выделение и обратный захват норадреналина. Регуляторы этих стадий.
- 18. Биосинтез катехоламинов, их деградация. Регуляция этих процессов.
- 19. Адренорецепторы, их типы и распределение в организме. Механизмы трансмембранной передачи сигнала, опосредованные адренорецепторами.
- 1. Ионотропные гамк-рецепторы
- 23. Биохимия глицина, как тормозногонейромедиатора. Глициновые рецепторы. Транспортные системы для глицина и других аминокислот.
- 2)Глутатионовая система транспорта
- 25. Роль гистамина в биохимии аллергических реакций. Рецепторы гистамина, их типы, агонисты и антагонисты.
- 27. Биохимия рецепторов серотонина, типы и распределение серотониновых рецепторов в организме.
- 28. Эндогенные опиоиды, их виды. Биохимия опиоидных рецепторов, их типы и участие в формировании реакций на наркотические анальгетики. Агонисты и антагонисты опиоидных рецепторов.
- 31. Биосинтез и метаболизм простагландинов. Циклооксигеназа, ее разновидности и ингибиторы. Ингибиторы синтеза простагландинов, тромбоксансинтетазы, липоксигеназы.
- 32.Белково-пептидные гормоны. Биосинтез и секреция белково-пептидных гормонов. Их механизм действия на эффекторные клетки.
- 33. Биохимия гормонов гипоталамуса. Соматокринин, соматостатин, рилизинг-факторы тиреотропного, кортикотропного и гонадотропного гормонов. Их роль в функционировании организма.
- 1. Гормон роста, пролактин
- 2. Тиреотропин, лютеинизирующий гормон и фолликулостимулирующий гормон
- 36. Гормоны поджелудочной железы. Глюкагон и инсулин. Их биологическая роль. Биохимический механизм действия инсулина. Рецепторы инсулина, их строение и функционирование.
- Механизм действия инсулина
- Активация инсулинового рецептора
- 2. Реакции, связанные с активностью ферментов map-киназ – в целом управляют активностью хроматина (медленные и очень медленные эффекты инсулина).
- Два пути реализации эффектов инсулина Реакции, связанные с активностью фосфатидилинозитол-3-киназы
- Действие фосфатидилинозитолдифосфат-3-киназы на фосфатидилинозитол-4,5-дифосфат Мишени и эффекты
- Инактивация инсулина
- Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями а и в, в результате чего гормон распадается.
- Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот.
- Патология Гипофункция
- 37. Биохимия углеводного обмена. Роль углеводов в образовании макроэргов и гликозилировании белков.
- Регуляция синтеза и секреции
- Механизм действия - цитозольный
- Мишени и эффекты
- Инактивация тиреоидных гормонов
- 42. Липиды, их биологическая роль и локализация в организме. Классификация липидов по химическому строению. Биосинтез холестерола, жирных кислот, триглицеридов: фармакологическая регуляция.
- Биосинтез холестерола
- 4. Обрыв цепи.
- 44.Обмен фосфолипидов и их роль в рецепторных механизмах действия лекарственных веществ.
- Реакции синтеза фосфолипидов с использованием фосфатидной кислоты
- 3 Путь – обратное превращение
- 45. Обмен жирных кислот и их роль в механизме действия лекарственных средств.
- Синтез жирных кислот
- Образование ацетил-sКоА из лимонной кислоты
- Образование малонил-sКоА из ацетил-sКоА
- Активные группы синтазы жирных кислот
- Реакции синтеза жирных кислот Окисление жирных кислот (β-окисление)
- Элементарная схема β-окисления
- Этапы окисления жирных кислот
- Реакция активации жирной кислоты
- Карнитин-зависимый транспорт жирных кислот в митохондрию
- Последовательность реакций β-окисления жирных кислот
- 46. Биохимия свертывающей системы крови: ферменты принимающие участие в коагуляции и фибринолизе, их фармакологическая регуляция.
- 1. Превращание фибриногена в фибрин-мономер.
- 47. Ферменты, принимающие участие в метаболизме эндогенных низкомолекулярных веществ и ксенобиотиков.
- 48. Повышение активности лекарственных веществ в результате реакции биотрансформации.
- 1)Повышение активности лекарственных веществ
- 2)Образование активного метаболита из неактивного вещества-пролекарства
- 49. Образование токсических продуктов лекарственных веществ в результате биотрансформации
- 50. Кофакторы и витамины, принимающие участие в метаболизме аминокислот и нейромедиаторов.