13. Холинэстеразы, их типы, локализация. Строение и функционирование ацетилхолинэстеразы.
Холинэстеразы — ферменты класса гидролаз, расщепляющие различные эфиры холина с образованием холина и соответствующих кислот.
Типы:
Ацетилхолинэстераза (истинная) - локализована в Х-синапсах на постсинаптической мембране и в нервном окончании (эритроциты, мышечная и нервная ткань). Гидролизует выделившийся и недепонированный АХ.
Псевдохолинэстераза (бутирилхолинэстераза, ложная холинэстераза) - топологически не связана с Х-синапсом. Локализована в плазме крови, печени, коже, гладких мышцах. Гидролизуют сложные эфиры холина (в т.ч. ЛВ).
Холинэстераза имеет два активных центра — анионный (карбоксил глутаминовой кислоты) и эстеразный (имидазол гистидина и гидроксил серина). Катионная головка ацетилхолина устанавливает с анионным центром холинэстеразы ионную связь, что обеспечивает распознавание медиатором фермента. Для гидролиза необходима ковалентная связь карбонильного углерода ацетилхолина с гидроксилом эстеразного центра.
Холинэстераза синтезируется в печени, представляет собой высокомолекулярный белок, связанный с альбуминовой фракцией.
Функции
Гидролиз нейромедиатора ацетилхолина до холина и остатка уксусной кислоты.
Реакция, катализируемая ацетилхолинэстеразой, необходима для дезактивации ацетилхолина в синаптической щели и перехода клетки-мишени в состояние покоя (например, для расслабления мышечной клетки). Поэтому ингибиторы ацетилхолинэстеразы — мощные токсины, воздействие которых на организм человека обычно приводит к смерти от судорог дыхательной мускулатуры.
14. М-холинорецепторы, их молекулярное строение, подтипы, локализация
и функционирование. Механизмы десенситизации.
М-холинорецептор или мускарин чувствительный рецептор относится к классу серпентиновых рецепторов, осуществляющих передачу сигнала через G-белки. Мускариновый рецептор любого типа состоит из одной полипептидной цепи длиной 440—540 остатков аминокислот, с внеклеточным N-концом и внутриклеточным С-концом.
Механизмы действия
М1 - с Gq белками (активация фосфолипазы С, Са++, ДАГ); Антагонист-Пирензепин
М2 - с Gi белками (ингибирование аденилатциклазы, цАМФ, проводимости для К+ и активности Са++-каналов); Антагонист- AF-DX 116
М3 - с Gq белками (активация фосфолипазы С IP3, Са++); Антагонист- гексагидроксилодифенол
Десенситизация МХР
разобщение рецептора с G-белком и эффекторным ферментом без снижения количества рецепторов на поверхности клетки
секвестрация рецепторов с клеточной мембраны
15. Н-холинорецепторы, их подтипы, строение, функционирование и локализация.
Типы
Нн - «ганглионарные»(нейрональные) - локализованы в вегетативных ганглиях, хромафинных клетках надпочечников и в синокаротидной зоне, они возбуждаются малыми дозами никотина и блокируются ганглиоблокаторами
Нм «мышечные» - локализованы на скелетных мышцах, избирательно блокируются α-бунгаротоксином и курареподобными средствами
Центральные рецепторы
Локализация
Также локализуются в ЦНС
Н-холинорецепторы находятся на постсинаптической мембране ганглионарных нейронов у окончаний всех преганглионарных волокон (симпатических и парасимпатических), в мозговом слое надпочечников, каротидных клубочках, концевых пластинках скелетных мышц и в центральной нервной системе. При этом Н-холинорецепторы вегетативных ганглиев существенно отличаются от Н-холинорецепторов скелетных мышц.
- 1. Транспорт лекарственных веществ системой крови и лимфы (макротранспорт) и через биологические мембраны (микротранспорт).
- 2. Метаболизм лекарственных веществ, его фазы, суть метаболических превращений в каждой фазе.
- 1) Метаболическая трансформация
- 2) Биосинтетические реакции
- 3. Биотрансформация как первая фаза метаболизма лекарственных веществ в организме. Ферменты первой фазы метаболизма.
- 1) Окислительно-восстановительные реакции
- 2)Гидролиз
- 4. Цитохром р-450, его свойства. Индукторы и ингибиторы цитохрома р-450
- 5. Конъюгация как вторая фаза метаболизма лекарственных веществ в
- 6. Механизм действия лекарственных веществ. Понятие мишени для лекарственных веществ. Роль мембранных белков и липидов в механизме действия лекарственных веществ.
- 8. Типы рецепторов плазматических мембран: рецепторы-ионные каналы, рецепторы, сопряженные с g-белками, рецепторы-протеинкиназы. Их участие в развитии ответа клетки на лекарственные вещества.
- 9. Вторичные мессенджеры. Образование и деградация. Их роль в развитии ответа клетки на лекарственные вещества.
- 10. Внутриклеточные рецепторы. Их участие в ответе клетки на лекарственные вещества.
- 11. Биохимия холинергического синапса. Биосинтез, депонирование и выброс ацетилхолина, регуляторы этих процессов.
- 12. Гидролиз ацетилхолина на холинэстеразе, его механизм. Ингибиторы холинэстеразы, их типы. Реактиваторы холинэстеразы.
- 13. Холинэстеразы, их типы, локализация. Строение и функционирование ацетилхолинэстеразы.
- Строение
- Механизм действия
- 16. Катехоламины, их представители, особенности химической структуры, их функции в организме.
- 17. Биохимия адренергического синапса. Депонирование, выделение и обратный захват норадреналина. Регуляторы этих стадий.
- 18. Биосинтез катехоламинов, их деградация. Регуляция этих процессов.
- 19. Адренорецепторы, их типы и распределение в организме. Механизмы трансмембранной передачи сигнала, опосредованные адренорецепторами.
- 1. Ионотропные гамк-рецепторы
- 23. Биохимия глицина, как тормозногонейромедиатора. Глициновые рецепторы. Транспортные системы для глицина и других аминокислот.
- 2)Глутатионовая система транспорта
- 25. Роль гистамина в биохимии аллергических реакций. Рецепторы гистамина, их типы, агонисты и антагонисты.
- 27. Биохимия рецепторов серотонина, типы и распределение серотониновых рецепторов в организме.
- 28. Эндогенные опиоиды, их виды. Биохимия опиоидных рецепторов, их типы и участие в формировании реакций на наркотические анальгетики. Агонисты и антагонисты опиоидных рецепторов.
- 31. Биосинтез и метаболизм простагландинов. Циклооксигеназа, ее разновидности и ингибиторы. Ингибиторы синтеза простагландинов, тромбоксансинтетазы, липоксигеназы.
- 32.Белково-пептидные гормоны. Биосинтез и секреция белково-пептидных гормонов. Их механизм действия на эффекторные клетки.
- 33. Биохимия гормонов гипоталамуса. Соматокринин, соматостатин, рилизинг-факторы тиреотропного, кортикотропного и гонадотропного гормонов. Их роль в функционировании организма.
- 1. Гормон роста, пролактин
- 2. Тиреотропин, лютеинизирующий гормон и фолликулостимулирующий гормон
- 36. Гормоны поджелудочной железы. Глюкагон и инсулин. Их биологическая роль. Биохимический механизм действия инсулина. Рецепторы инсулина, их строение и функционирование.
- Механизм действия инсулина
- Активация инсулинового рецептора
- 2. Реакции, связанные с активностью ферментов map-киназ – в целом управляют активностью хроматина (медленные и очень медленные эффекты инсулина).
- Два пути реализации эффектов инсулина Реакции, связанные с активностью фосфатидилинозитол-3-киназы
- Действие фосфатидилинозитолдифосфат-3-киназы на фосфатидилинозитол-4,5-дифосфат Мишени и эффекты
- Инактивация инсулина
- Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями а и в, в результате чего гормон распадается.
- Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот.
- Патология Гипофункция
- 37. Биохимия углеводного обмена. Роль углеводов в образовании макроэргов и гликозилировании белков.
- Регуляция синтеза и секреции
- Механизм действия - цитозольный
- Мишени и эффекты
- Инактивация тиреоидных гормонов
- 42. Липиды, их биологическая роль и локализация в организме. Классификация липидов по химическому строению. Биосинтез холестерола, жирных кислот, триглицеридов: фармакологическая регуляция.
- Биосинтез холестерола
- 4. Обрыв цепи.
- 44.Обмен фосфолипидов и их роль в рецепторных механизмах действия лекарственных веществ.
- Реакции синтеза фосфолипидов с использованием фосфатидной кислоты
- 3 Путь – обратное превращение
- 45. Обмен жирных кислот и их роль в механизме действия лекарственных средств.
- Синтез жирных кислот
- Образование ацетил-sКоА из лимонной кислоты
- Образование малонил-sКоА из ацетил-sКоА
- Активные группы синтазы жирных кислот
- Реакции синтеза жирных кислот Окисление жирных кислот (β-окисление)
- Элементарная схема β-окисления
- Этапы окисления жирных кислот
- Реакция активации жирной кислоты
- Карнитин-зависимый транспорт жирных кислот в митохондрию
- Последовательность реакций β-окисления жирных кислот
- 46. Биохимия свертывающей системы крови: ферменты принимающие участие в коагуляции и фибринолизе, их фармакологическая регуляция.
- 1. Превращание фибриногена в фибрин-мономер.
- 47. Ферменты, принимающие участие в метаболизме эндогенных низкомолекулярных веществ и ксенобиотиков.
- 48. Повышение активности лекарственных веществ в результате реакции биотрансформации.
- 1)Повышение активности лекарственных веществ
- 2)Образование активного метаболита из неактивного вещества-пролекарства
- 49. Образование токсических продуктов лекарственных веществ в результате биотрансформации
- 50. Кофакторы и витамины, принимающие участие в метаболизме аминокислот и нейромедиаторов.