logo
учебник по естествознинию / Концепции современного естествознания_Бондарев В

§ 8.1. Форма и строение Земли

Форма Земли

Земля является той ареной, на которой возникают, развиваются и погибают цивилизации, происходит становление единого современного общества. От того, насколько хорошо мы будем понимать устройство нашей планеты, во многом зависит наше будущее. Однако мы знаем о ней не больше (а зачастую и существенно меньше), чем о далеких звездах.

Начнем с представлений о форме Земли. В настоящее время никто не отрицает утверждения о том, что наша планета «круглая». Действительно, в первом приближении форма Земли определяется как шаровидная. Такое представление возникло еще в Древней Греции. И только в XVII-XVIII вв. оно стало уточняться. Было выяснено, что Земля сплюснута по оси вращения (разница между осями составляет около 21 км). Предполагается, что Земля формировалась под влиянием совместного действия гравитации и центробежных сил. Равнодействующая этих сил - сила тяжести — выражается в ускорении, которое приобретает каждое тело у поверхности Земли. Уже И. Ньютон теоретически обосновал положение, согласно которому Земля должна быть сжата в направлении оси вращения и принять форму эллипсоида, что было впоследствии подтверждено эмпирически. Позднее было обнаружено, что Земля сжата не только на полюсах, но в небольшой степени и по экватору. Наибольший и наименьший радиусы экватора различаются на 213 м, т.е. Земля является трехосным эллипсоидом. Но представления о Земле как об эллипсоиде также верны лишь в первом приближении.

Реальная поверхность Земли еще более сложна. Наиболее близок к современной фигуре Земли геоид - воображаемая уровенная поверхность, по отношению к которой вектор силы тяжести повсеместно направлен перпендикулярно. На площади акватории океанов геоид совпадает с поверхностью воды, находящейся в полном покое. Расхождение между геоидом и эллипсоидом местами достигает ±(100-150) м, что объясняется неравномерным распределением масс разной плотности в теле Земли, влияющим на изменение силы тяжести, следовательно, и на форму геоида. В настоящее время для создания геодезической основы карт и других целей в России используется эллипсоид Красовского со следующими основными параметрами: экваториальный радиус 6378,245 км; полярный радиус 6356,863 км; полярное сжатие 1/298,25; площадь поверхности Земли около 510 млн км2, ее объем 1,083 · 1012 км3. Масса Земли составляет 5,976 · 1027 г.

Внутреннее строение Земли

Отметим, что непосредственному наблюдению доступны только самые верхние (до глубин 15—20 км) горизонты земной коры, выходящие на поверхность или вскрытые рудниками, шахтами и буровыми скважинами. Суждения о составе и физическом состоянии более глубоких оболочек основываются на данных геофизических методов, т.е. имеют предположительный характер. Из этих методов особое значение имеют сейсмический метод, основанный на регистрации скорости распространения в теле Земли волн, вызываемых землетрясениями или искусственными взрывами. В очагах землетрясений возникают так называемые продольные сейсмические волны, которые рассматриваются как реакция среды на изменение объема, и поперечные волны реакция среды на изменение формы, - распространяющиеся только в твердых телах. На основе геофизических наблюдений установлено, что Земля неоднородна и дифференцирована вдоль радиуса.

В настоящее время известно несколько моделей строения Земли. Большинство исследователей принимает модель, согласно которой выделяются три главные оболочки Земли, разделенные четко выраженными поверхностями сейсмического раздела, где скорости сейсмических волн резко изменяются (рис. 8.1) [1, 10, 12, 35]:

  1. земная кора - твердая верхняя оболочка Земли. Ее мощность изменяется от 5-10 км под океанами до 30-40 км в равнинных областях и достигает 50-75 км в горных районах (максимальные значения встречаются под Андами и Гималаями);

  2. мантия Земли распространяется ниже земной коры до глубины 2900 км от поверхности и подразделяется на две части: верхнюю мантию - до глубины 900-1000 км и нижнюю мантию - от 900-1000 до 2900 км;

3) ядро Земли, где выделяют внешнее ядро, - до глубины около 5120 км и внутреннее ядро — ниже 5120 км. Земная кора отделяется от мантии в большинстве случаев достаточно резкой сейсмической границей - поверхностью Mохоровичича (сокращенно Μ οхо, или М). Сейсмическим методом в верхней мантии выявлен слой относительно менее плотных, как бы «размягченных» горных пород - астеносфера.В этом слое наблюдаются понижение скорости сейсмических волн, особенно поперечных, и повышение электрической проводимости, что свидетельствует о менее вязком, более пластичном состоянии вещества - на 2-3 порядка ниже, чем в покрывающих и подстилающих слоях мантии. Предполагается, что эти свойства связаны с частичным плавлением вещества мантии (1-10%) в результате более быстрого повышения температуры, нежели давления с увеличением глубины. Вязкость астеносферы существенно изменяется как в вертикальном, так и в горизонтальном направлении, изменяется и ее мощность. Астеносфера располагается на различных глубинах: под континентами - от 80-120 до 200-250 км, под океанами - от 50-70 до 300-400 км. Она наиболее четко выражена и приподнята, местами до глубин 20-25 км и менее, под наиболее подвижными зонами земной коры и, напротив, слабо выражена и опущена под наиболее спокойными участками континентов (щитами платформ). Астеносфере принадлежит большая роль в глубинных геологических процессах. Твердый надастеносферный слой мантии вместе с земной корой называется литосферой.

Основные характеристики Земли

Средняя плотность Земли, по гравиметрическим данным, составляет 5,5 г/см . Плотность горных пород, слагающих земную кору, колеблется от 2,4 до 3,0 г/см . Сопоставление этих значений со средней плотностью Земли приводит к предположению, что с глубиной должно наблюдаться увеличение плотности в мантии и ядре Земли. Считается, что в над астеносферной части мантии ниже границы Мохо породы значительно плотнее. При переходе от мантии к ядру происходит скачок плотности до 9,7-10,0 г/см3, затем она повышается и во внутреннем ядре составляет 12,5-13,0 г/см3.

Рассчитано, что ускорение силы тяжести изменяется от 9,82 м/с2 у поверхности до максимального значения 10,37 м/с2 в основании нижней мантии (2900 км). В ядре ускорение силы тяжести быстро падает, доходя на глубине около 5000 км до 4,52 м/с2, далее на глубине 6000 км падая до 1,26 м/с2, а в центре - до нуля.

Известно, что Земля представляет собой как бы гигантский магнит с силовым полем вокруг. В современную эпоху магнитные полюса Земли расположены вблизи географических полюсов, но не совпадают с ними. В настоящее время происхождение главного магнитного поля Земли чаще всего объясняют с помощью динамотеорической концепции Френкеля-Эльзассера, согласно которой это поле возникает в результате действия системы электрических токов, вызванных сложными конвективными движениями в жидком внешнем ядре при вращении Земли. На общий фон магнитного поля накладывается влияние горных пород, которые содержат ферромагнитные минералы, залегающие в верхней части земной коры, в результате чего на поверхности Земли образуются магнитные аномалии. Остаточная намагниченность горных пород, содержащих ферромагнитные минералы, ориентирована, как магнитное поле Земли, существовавшее в период их образования. Исследования этой намагниченности показали, что магнитное поле Земли неоднократно испытывало инверсии в ходе геологической истории: северный полюс становился южным, а южный - северным. Шкалу магнитных инверсий используют для сопоставления толщ горных пород и определения их возраста.

Для понимания процессов, происходящих в глубинах Земли, важным оказался вопрос теплового поля планеты. В настоящее время выделяют два источника тепла Земли - Солнце и недра Земли. Прогревание Солнцем распространяется на глубину, не превышающую 28-30 м. На некоторой глубине от поверхности располагается пояс постоянной температуры, равной среднегодовой температуре данной местности. Так, в Москве на глубине 20 м наблюдается постоянная температура, равная +4,2 °С, а в Париже +11,83 °С на глубине 28 м. Ниже пояса постоянной температуры наблюдениями в шахтах, рудниках, буровых скважинах установлено повышение температуры с глубиной, что обусловлено тепловым потоком, поступающим из недр Земли.

Среднее для Земли значение внутреннего теплового потока - около 1,4-1,5 мккал/см2в секунду. Установлено, что тепловой поток зависит от степени подвижности коры и интенсивности эндогенных (внутренних) процессов. В пределах спокойных районов континентов его значение несколько меньше среднего. Существенные колебания теплового потока характерны для гор, на большей части океанического дна тепловой поток почти такой же, как на материковых равнинах, но в пределах так называемых рифтовых долин срединно-океанских хребтов увеличивается иногда в 5-7 раз. Высокие значения теплового потока отмечены во внутренних областях Красного моря.

Источники внутренней тепловой энергии Земли еще недостаточно изучены. Но основными считаются: 1) распад радиоактивных элементов (урана, тория, калия и др.); 2) гравитационная дифференциация с перераспределением материала по плотности в мантии и ядре, сопровождающаяся выделением теплоты. Наблюдения в рудниках, шахтах и буровых скважинах свидетельствуют о повышении температуры с глубиной. Для ее характеристики введен геотермический градиент - нарастание температуры в градусах Цельсия на единицу глубины. Его значения различны в разных местах земного шара. Средним считается примерно 30 °С на 1 км, а крайние значения диапазона различаются более чем в 25 раз, что объясняется различной эндогенной активностью земной коры и различной теплопроводностью горных пород. Наибольший геотермический градиент, равный 150 °С на 1 км, отмечен в штате Орегон (США), а наименьший (6 °С на 1 км) - в Южной Африке. В Кольской скважине на глубине 11 км зарегистрирована температура около 200 °С. Наибольшие значения градиента связывают с подвижными зонами океанов и континентов, а наименьшие — с наиболее устойчивыми и древними участками континентальной коры. Изменение температуры с глубиной определено весьма приблизительно по косвенным данным. Для земной коры расчеты температур основываются главным образом на данных о тепловом потоке, теплопроводности горных пород, температуре лав, но для больших глубин такие данные отсутствуют, и состав мантии и ядра точно неизвестен. Предполагается, что ниже астеносферы температура закономерно повышается при значительном уменьшении геотермического градиента.

На основе представлений о том, что ядро состоит главным образом из железа, были проведены расчеты его плавления на различных границах с учетом существующего там давления. Получено, что на границе нижней мантии и ядра температура плавления железа должна быть 3700 °С, а на границе внешнего и внутреннего ядра - 4300 °С. Из этого делается вывод, что с физической точки зрения температура в ядре составляет 4000-5000 °С. Для сравнения можно указать, что на поверхности Солнца температура чуть меньше 6000 °С.

Коснемся вопроса об агрегатном состоянии вещества Земли. Считается, что вещество литосферы находится в твердом кристаллическом состоянии, так как температура при существующих давлениях здесь не достигает точки плавления. Однако местами и внутри земной коры сейсмологи отмечают наличие отдельных низкоскоростных линз, напоминающих астеносферный слой. По сейсмическим данным, вещество мантии Земли, через которую проходят как продольные, так и поперечные сейсмические волны, находится в эффективно-твердом состоянии. При этом вещество нижней мантии, вероятно, находится в кристаллическом состоянии, поскольку существующее в них давление препятствует плавлению. Только в астеносфере, где скорости сейсмических волн понижены, температура приближается к точке плавления. Предполагается, что вещество в астеносферном слое может быть в аморфном стекловидном состоянии, а часть (менее 10%) даже в расплавленном. Геофизические данные, а также очаги магмы, возникающие на различных уровнях астеносферного слоя, указывают на неоднородность и расслоенность астеносферы. Что касается состояния вещества в ядре Земли, то большинство исследователей считают, что вещество внешнего ядра находится в жидком состоянии, а внутреннее ядро — в твердом, поскольку переход от мантии к ядру сопровождается резким снижением скорости продольных сейсмических волн, а поперечные волны, распространяющиеся только в твердой среде, в него не входят.