§ 6.1. Иерархичность миров и границы нашего познания
Проблема выделения фундаментальных физических теорий
В настоящее время считается, что именно физическая картина мира лежит в основе описания природы. В физике приходится иметь дело с разнообразными величинами, значения которых охватывают огромный диапазон. Так, интервал известных нам длин простирается от размеров элементарных частиц до размеров Вселенной, интервал времен - от периодов полураспада короткоживущих элементарных частиц до возраста Вселенной, интервал масс — от массы электрона до масс галактик.
Периодически предпринимались и предпринимаются попытки создать некую универсальную теорию, которая охватывала бы весь разнообразный мир физических объектов и явлений. Однако пока не удалось, а большинство физиков считает, что никогда не удастся, создать единую, всеобъемлющую теорию, описывающую все разнообразие явлений, с которыми мы сталкиваемся. Сейчас существует много теорий, каждая из которых имеет ограниченную область применения. Например, законы механики Ньютона несправедливы для тел, развивающих очень большие скорости. В таких случаях пользуются специальной теорией относительности. Однако эта теория не применима к области чрезвычайно больших масс, а также для объяснения некоторых явлений, происходящих на огромных галактических расстояниях; при этом привлекают общую теорию относительности. Когда речь заходит о явлениях атомных и ядерных масштабов, механика Ньютона уступает место квантовой теории, а в случаях больших скоростей - релятивистской квантовой теории.
В настоящее время не существует абсолютно четких критериев области применения той или иной физической концепции. Из опыта известно, что теорию относительности следует использовать, когда скорости тел приближаются к скорости света, а механика Ньютона правильно описывает поведение тел, скорости которых малы по сравнению со скоростью света. Однако непонятно, когда именно нужно переходить от ньютоновской механики к релятивистской. Ответ на этот вопрос зависит от того, с каким конкретно случаем мы имеем дело, и от того, с какой точностью надо решать задачу.
Физическая картина мира слагается из некоторого количества фундаментальных концепций, но нет совпадения мнений относительно того, какие это концепции. Например, В. Гейзенберг полагал, что в современной физике существуют по крайней мере четыре фундаментальных замкнутых непротиворечивых теории: классическая механика, термодинамика, электродинамика, квантовая механика, каждая из которых в своей области приложимости наилучшим образом описывает реальность. (Классическая и квантовая механика будут рассмотрены в § 6.2 и 6.4.)
Обычно, когда говорят об электродинамике, подразумевают классическую электродинамику - теорию электромагнитных процессов в различных средах и вакууме. Она охватывает совокупность явлений, в которых основную роль играют взаимодействия между заряженными частицами, осуществляемые посредством электромагнитного поля. Все электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрические и магнитные поля, с распределением зарядов и токов в пространстве. Содержание четырех уравнений Максвелла для электромагнитного поля качественно сводится к следующему: магнитное поле порождается движущимися зарядами и переменным электрическим полем (током смещения); электрическое поле с замкнутыми силовыми линиями (вихревое поле) порождается переменным магнитным полем; силовые линии магнитного поля всегда замкнуты (т.е. оно не имеет источников - магнитных зарядов, подобных электрическим); электрическое поле с незамкнутыми силовыми линиями (потенциальное поле) порождается электрическими зарядами — источниками этого поля. Из теории Максвелла вытекают конечность скорости распространения электромагнитного взаимодействия и существование электромагнитных волн.
Наряду с классической выделяют квантовую электродинамику — квантовую теорию электромагнитного поля и его взаимодействия с заряженными частицами (главным образом электронами и позитронами, мюонами). В основе квантовой электродинамики лежит подтвержденное на опыте представление о дискретности электромагнитного излучения. Кванты электромагнитного поля - фотоны - являются носителями минимально возможных при конкретной частоте поля энергии и импульса. В рамках квантовой электродинамики делается вывод о том, что электромагнитному излучению присущи не только волновые, но и дискретные, корпускулярные свойства, а взаимодействие электромагнитного излучения с заряженными частицами рассматривается как поглощение и испускание частицами фотонов. Обмен фотонами обусловливает электромагнитное взаимодействие заряженных частиц. Частица может испустить фотоны, а затем сама их поглотить. Квантовая электродинамика достаточно точно описывает испускание, поглощение и рассеяние излучения веществом, электромагнитное взаимодействие между заряженными частицами и т.п.
Термодинамика в классическом понимании - это раздел физики, изучающий наиболее общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими равновесными состояниями.
Термодинамика строится на основе фундаментальных принципов - начал термодинамики, которые являются обобщением многочисленных наблюдений и результатов экспериментов. Термодинамика возникла в первой половине XIX в. в связи с развитием теории тепловых машин и установлением закона сохранения энергии. Различают химическую термодинамику, техническую термодинамику и термодинамику разных физических явлений.
В настоящее время быстро развивается термодинамика неравновесных процессов - раздел физики, в котором изучаются неравновесные процессы (диффузия, вязкость, термоэлектрические явления и др.) на основе общих законов термодинамики. При количественном изучении этих процессов, в частности при определении их скоростей в зависимости от внешних условий, составляются уравнения баланса массы, импульса, энергии и энтропии для элементарных объемов системы, и эти уравнения исследуются совместно с уравнениями рассматриваемых процессов. Термодинамика неравновесных процессов является теоретической основой исследования открытых систем, в том числе живых существ.
Фундаментальные типы физического взаимодействия
В современной физике принято представление о четырех фундаментальных типах физического взаимодействия:
◊ сильное взаимодействие - самое сильное из фундаментальных взаимодействий элементарных частиц. В этом взаимодействии участвуют элементарные частицы, именуемые адронами. Сильное взаимодействие превосходит электромагнитное взаимодействие примерно в 100 раз, его радиус действия около 10-13 см. Частный случай сильного взаимодействия - ядерные силы;
◊ электромагнитное взаимодействие по «силе» занимает следующее положение после сильного взаимодействия. В нем участвуют частицы, имеющие электрический заряд (или магнитный момент). Переносчиком электромагнитного взаимодействия между заряженными частицами является электромагнитное поле, или кванты поля - фотоны. Это взаимодействие является дальнодействующим. Оно определяет взаимодействие между ядрами и электронами в атомах и молекулах, поэтому к электромагнитному взаимодействию сводится большинство сил, проявляющихся в макроскопических явлениях: силы упругости, трения, химическая связь и т.д. Электромагнитное взаимодействие приводит также к излучению электромагнитных волн;
◊ слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия. В слабом взаимодействии участвуют все элементарные частицы (кроме фотона). Ожидаемый радиус действия слабого взаимодействия порядка 2 – 10-16 см. Это взаимодействие обусловливает большинство распадов элементарных частиц, взаимодействия нейтрино с веществом и др.;
◊ гравитационное взаимодействие - присущее всем видам материи взаимодействие, самое слабое из фундаментальных взаимодействий элементарных частиц; имеет характер притяжения.
В настоящее время разработана объединенная теория электромагнитного и слабого взаимодействий (электрослабое взаимодействие). Существуют модели, включающие и сильное взаимодействие (великое объединение). Делаются попытки описать все четыре взаимодействия на единой основе.
Иерархичность физических явлений
Разные физические концепции в единое целое объединяет, вероятно, общее поле, на котором есть области наиболее частого применения тех или иных основных физических теорий - составляющих общей физической картины мира. Этот тезис иллюстрирует диаграмма на рис. 6.1, построенная в координатах расстояние - скорость, где указаны области применимости пяти самых широких современных теорий, причем область скоростей и расстояний, с которыми мы сталкиваемся в повседневной жизни, занимает лишь небольшую площадь в нижней части диаграммы [18]. Следует отметить, что эти области частично перекрываются и разделение носит условный характер. Например, на диаграмме показано, что общая теория относительности применима к астрономическим расстояниям, однако решающая ее проверка основана на анализе движения планет, а одно из предсказаний теории можно проверить даже в лаборатории. Из диаграммы следует, что применять общую теорию относительности необходимо для астрономических расстояний. Верхняя часть диаграммы ограничена скоростью света, поскольку, согласно современной физической парадигме, скорости материальных частиц, превосходящие это предельное значение, не имеют физического смысла. Кроме того, на современном уровне знаний нельзя ответить на вопрос, какие физические теории применимы к расстояниям, меньшим размеров протона или большим размеров видимой Вселенной. Не ясно даже, имеет ли смысл говорить о физических концепциях для этих областей.
В настоящее время сложилось представление об иерархичности физических явлений. В рамках физической картины мира выделяют по меньшей мере три структурных уровня - микро-, макро- и мегамир.
Макромир имеет дело с макрообъектами, размеры которых соотносимы с земными масштабами. В пределах макромира пространство измеряется в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах и годах. В этой области наиболее подходящей моделью физической реальности является механика И. Ньютона.
Мегамир характеризуется большими космическими масштабами и скоростями. Здесь пространство измеряется в астрономических единицах, световых годах и парсеках. Характерные для мегамира времена - миллионы и миллиарды лет. Для этой области разработаны такие концепции, как специальная и общая теории относительности.
Микромир, или мир микрообъектов, имеет масштабы 10-8 – 10-16 см, а время охватывает интервал от 10-24 до времени образования Вселенной. Для микромира наиболее подходят нерелятивистская и релятивистская квантовые механики.
- Оглавление
- Глава 1
- § 1.1. Естественно-научная и гуманитарная культуры
- § 1.2. Классификация наук и отраслей естествознания
- § 1.3. Естествознание и религия
- § 1.4. Естествознание и философия
- § 1.5. Естествознание и математика
- Глава 2
- § 2.1. Сущность научного знания
- § 2.2. Средства и методы науки
- § 2.3. Структура и уровни научного знания
- § 2.4. Этические проблемы в науке
- Глава 3
- § 3.1. История естествознания и модели развития науки
- § 3.2. Традиции и новации в истории естествознания
- § 3.3. Этапы становления современного естествознания
- § 3.4. История отраслей естествознания
- Глава 4
- § 4.1. Системный подход
- § 4.2. Модели и моделирование систем
- § 4.3. Системные исследования
- Глава 5
- § 5.1. Пространство и время в естествознании
- § 5.2. Свойства пространства и времени
- § 5.3. Методы оценки пространства
- § 5.4. Методы оценки времени
- Глава 6
- § 6.1. Иерархичность миров и границы нашего познания
- § 6.2. Концепции макромира и классическая механика
- § 6.3. Концепции мегамира и теория относительности
- § 6.4. Концепции микромира и квантовая механика
- § 6.5. Концепции возникновения и развития Вселенной
- Глава 7
- §7.1. Химические явления и их сущность
- § 7.2. Химический состав вещества
- § 7.3. Химическая структура вещества
- § 7.4. Химические процессы
- § 7.5. Химическая эволюция
- Глава 8
- § 8.1. Форма и строение Земли
- § 8.2. Вещественный состав и строение земной коры
- § 8.3. Гидросфера и атмосфера Земли
- § 8.4. Геодинамические процессы
- § 8.5. Возникновение и геологическая история Земли
- Глава 9
- § 9.1. Сущность и уровни организации жизни
- § 9.2. Концепции возникновения жизни
- § 9.3. Эволюционное учение в биологии
- § 9.4. Развитие жизни на Земле
- § 9.5. Человек: феномен, происхождение, биоэтика
- Глава 10
- § 10.1. Основные свойства географической оболочки
- § 10.2. Функционирование географической оболочки
- § 10.3. История развития географической оболочки
- § 10.4. Географическая среда и глобальные проблемы человечества
- Глава 11
- § 11.1. Глобальный эволюционизм
- § 11.2. Самоорганизация как элементарный процесс эволюции
- § 11.3. Закономерности самоорганизации и эволюционного процесса