17. Засухоустойчивость и жароустойчивость. Физиологические причины повреждения и гибели растений от почвенной и воздушной засухи. Диагностика и пути повышения засухоустойчивости.
Засухоустойчивость — способность растений переносить длительные засушливые периоды, значительный водный дефицит, обезвоживание клеток, тканей и органов. При этом ущерб урожая зависит от продолжительности засухи и ее напряженности.
Жароустойчивость — способность растений переносить действие высоких температур, перегрев. Это генетически обусловленный признак. Виды и сорта сельскохозяйственных растений различаются по выносливости к высоким температурам.
По жароустойчивости выделяют три группы растений.
Жаростойкие — термофильные синезеленые водоросли и бактерии горячих минеральных источников, способные переносить повышение температуры до 75-100 °С. Жароустойчивость термофильных микроорганизмов определяется высоким уровнем метаболизма, повышенным содержанием РНК в клетках, устойчивостью белка цитоплазмы к тепловой коагуляции.
Жаровыносливые — растения пустынь и сухих мест обитания (суккуленты, некоторые кактусы, представители семейства Толстянковые), выдерживающие нагревание солнечными лучами до 50-65 °С. Жароустойчивость суккулентов во многом определяется повышенными вязкостью цитоплазмы и содержанием связанной воды в клетках, пониженным обменом веществ.
Нежаростойкие — мезофитные и водные растения. Мезофиты открытых мест переносят кратковременное действие температур 40-47 °С, затененных мест — около 40-42 °С, водные растения выдерживают повышение температуры до 38-42 °С. Из сельскохозяйственных наиболее жаровыносливы теплолюбивые растения южных широт (сорго, рис, хлопчатник, клещевина и др.).
ВЛИЯНИЕ ПЕРЕГРЕВА НА ФИЗИОЛОГИЧЕСКИЕ ПРОЦЕССЫ Во время засухи наряду с обезвоживанием происходит перегрев растений. При действии больших температур (35 °С и выше) наблюдаются два типа конфигурации вязкости цитоплазмы: почаще увеличение, реже понижение. Возрастание вязкости цитоплазмы замедляет её движение, но процесс обратим даже при 5-минутном действии температуры 51 °С. Высочайшая температура увеличивает концентрацию клеточного сока и проницаемость клеток для мочевины, глицерина, эозина и остальных соединений. В итоге экзоосмоса веществ, растворенных в клеточном соке, равномерно снижается осмотическое давление. Но при температурах выше 35 °С вновь отмечается рост осмотического давления из-за усиления гидролиза крахмала и роста содержания моносахаров. Как надо из рис. 14.2, у листьев традесканции выход электролитов индуцируется под влиянием температуры наиболее высочайшей по сопоставлению с температурой, меняющей вязкость цитоплазмы и её движение. При всем этом утрата характеристики полупроницаемости тонопласта (оцениваемая по выходу антоциана) вызывается только кратковременным действием совсем больших температур (57-64°С). Процесс фотосинтеза наиболее чувствителен к действию больших температур, чем дыхание. Гидролиз полимеров, а именно белков, ускоряющийся при аква недостатке, существенно активизируется при высокотемпературном стрессе. Распад белков идет с образованием аммиака, который может оказывать отравляющее действие на клеточки у неустойчивых к перегреву растений. У жаростойких растений наблюдается увеличение содержания органических кислот, связывающих лишний аммиак. Еще одним методом защиты от перегрева может служить усиленная транспирация, обеспечиваемая сильной корневой системой. В остальных вариантах (суккуленты) жаростойкость определяется высочайшей вязкостью цитоплазмы и завышенным содержанием крепко связанной воды. При действии больших температур в клеточках растений индуцируется синтез стрессовых белков (белков теплового шока). В сельскохозяйственной практике для повышения жароустойчивости растений используют внекорневую обработку 0,05%-ным веществом солей цинка.
Диагностика засухоустойчивости.
Для диагностики засухоустойчивости растений используют ряд полевых и лабораторных методов. Сравниваемые сорта и виды растений выращивают в засушливых районах. Сорта, в меньшей степени снижающие урожаи, считаются более засухоустойчивыми. Испытания на засухоустойчивость в засушниках и суховейных установках дают возможность подвергать растения почвенной и атмосферной засухе в любой период их вегетации и оценивать сорта. Засушни-ки — это делянки, на которых исследуемые растения закрывают в период дождей пленкой. Для отвода воды с соседних делянок выкапывают стоковые канавы. При использовании суховейных камер растения выращивают в вегетационных сосудах и затем подвергают действию струй нагретого и высушенного воздуха.
Орошение как радикальное средство борьбы с засухой.
Наиболее эффективным способом борьбы с засухой в аридных регионах является орошение. Оно эффективно и в районах, где осадков выпадает достаточно, но распределение их не является оптимальным. Орошение дождеванием овощных, плодовых, кормовых культур и картофеля используют в Центральном Нечерноземье. Необходимо организовать полив растений таким образом, чтобы свести повреждаемость растений от засухи к минимуму и наиболее эффективно использовать поливную воду. Для определения сроков полива руководствуются наблюдениями за влажностью почвы, не допуская снижения предполивной влажности ниже оптимального уровня (60—70 % НВ).
- 1. Углеводы. Их роль, классификация, содержание в растениях.!
- 2. Особенности питания растений аммонийными и нитратными солями.!
- 3. Ростовые движения /тропизмы, настии /, их природа и значение в жизни растений.!
- 5. Физиологическая роль азота. Особенности азотного питания растений.!
- 6. Влияние внешних и внутренних факторов на фотосинтез
- 7. Растительная клетка как осмотическая система
- 8. Ростовые корреляции.
- 16. Фотосинтез как основа продуктивности с/х растений.
- 17. Засухоустойчивость и жароустойчивость. Физиологические причины повреждения и гибели растений от почвенной и воздушной засухи. Диагностика и пути повышения засухоустойчивости.
- 18. Белки растений, их состав, структура и функции. Содержание в растениях. Питательная ценность.
- 19. Транспирация. Зависимость её от внутренних и внешних условий, методы учета и возможности регулирования транспирации.
- 20.1. Жаростойкость растений
- 4. Холодостойкость растений
- 22. Роль дыхания в биосинтезе белков, липидов, нуклеиновых кислот и других веществ.
- 23. Физиология цветения, роль внутренних и внешних факторов в инициации цветения.
- 24. Физиологические основы диагностики минерального питания растений.
- 25. Сущность и физиологическая роль процесса дыхания. Возможные пути окисления субстратов дыхания.
- 26. Холодоустойчивость растений. Причины повреждения и гибели теплолюбивых культур при низких положительных температурах. Способы повышения холодоустойчивости.
- 29. Зимостойкость как устойчивость растений к комплексу неблагоприятных факторов в осенне-зимне-весенний периоды. Причины повреждений растений и меры их снижения.
- 31.Водный баланс- соотношение между поглощаемой и расходуемой воды за определённый период
- 32. Анаэробное дыхание осуществляется в эндоплазматической сети, ядре, во всех мембранах.
- 36. Светолюбивые и теневыносливые растения, их физиологические различия. Использование знаний о светолюбии и теневыносливости растений в агрономической практике.
- 37. Дегидрогеназы и оксидазы растений, их химическая природа и функции.
- 38. Биологическое значение покоя, виды покоя, способы его продления и прерывания.
- 40.Физиологические основы орошения
- 44 Световая (светозависимая) стадия
- 45.В клетках растений существует по крайней мере четыре типа мембранного транспорта ионов - пассивная диффузия, облегченная диффузия, первично-активный и вторично-активный транспорт.
- 46.Лежкость –
- 55Полегание растений
- 66.Поглощение воды растением.
- 67. Физико - химическая сущьность фотосинтеза. Лист ,как орган фотосинтеза.Хим. Состав , структура и функции хлоропластов.
- 68 Влияние внутренних и внешних факторов на рост и развитие растений. Контроль за ростовыми процессами посевов и насаждений.
- 69.Параметры оценки фитоценозов, как фотосинтезирующих систем.
- 70. Механизмы поглощения веществ растительной клеткой. Пассивный и активный транспорт веществ.
- 75 Транспирационный коэффициент-число граммов воды израсходованное на образование 1грамма вещества. Колеблется от 125-1000.Средний 300.
- 81. Формирование качества урожая в зависимости от условий возделывания культур.
- 82. Физиология формирования семян. Взаимодействие вегетативных и репродуктивных органов в процессе формирования семян.
- 83. Липиды, их химическая природа и функции, содержание в растениях.
- 84. Фотосинтез и урожай.
- 85. . Физиологические основы хранения урожая.
- 86. Поглощение элементов минерального питания растением.