logo
Lektsii_po_Biokhimii_i_molekulyarnoy_biologii

Лекция 4 строение, свойства, биологическая роль сложных липидов

Глицерофосфолипиды в качестве структурной основы содержат трехатомный спирт глицерол. При гидролизе глицерофосфолипидов кроме глицерола обнаруживают две жирные кислоты, фосфорную кислоту и различные заместители. Жирные кислоты присоединяются к первому и второму атомам глицерола сложно-эфирной связью; при этом, как правило, природные глицерофосфолипиды содержат насыщенную жирную кислоту в первом положении, а ненасыщенную (моноеновую или полиеновую) – во втором. В третьей позиции находится остаток фосфорной кислоты, к которой присоединяются различные заместители. Если в третьем положении имеется только фосфорная кислота, глицерофосфолипид называется фосфатидной кислотой. Фосфатидная кислота образуется в организме в процессе биосинтеза триацилглицеролов и глицерофосфолипидов как общий промежуточной метаболит. Остаток фосфатидной кислоты называют фосфатидил; он входит в название других глицефосфолипидов, после которого указывают название заместителя атома водорода в фосфорной кислоте.

Фосфатидная кислота

В качестве заместителя в природных глицерофосфолипидах находится либо аминоспирт холин, либо азотистое основание этаноламин, либо остаток аминокислоты серина, либо шестиатомный спирт инозитол, либо вторая молекула глицерола. В полном названии глицерофосфолипида будет учитываться название заместителя, которое присоединяется к слову «фосфатидил».

Фосфатидилхолин (лецитин) в своем составе содержит аминоспирт холин. Фосфатидилхолины широко распространены в клетках; особенно их много в мозговой ткани человека и животных, в растениях они встречаются в соевых бобах, зародышах пшеницы, семенах подсолнечника. В бактериальных клетках их содержание невелико.

Фосфатидилхолин

Фосфатидилэтаноламин (кефалин) содержит этаноламин, который присоединяется к остатку фосфорной кислоты эфирной связью:

Фосфатидилэтаноламин

Фосфатидилэтаноламины (так же как и фосфатидилхолины) являются главными липидными компонентами, формирующими билипидный матрикс биологических мембран. При этом, как правило, фосфатидилхолины почти полностью располагаются во внешнем монослое билипидного матрикса, а фосфатидилэтаноламин – во внутреннем.

Фосфатидилсерин содержит полярную группу в виде остатка аминокислоты серина:

Фосфатидилсерин

Значение фосфатидилсерина определяется тем, что он является предшественником синтеза фосфатидилхолинов и фосфатидилэтаноламинов и в значительно меньших количествах входит в состав биологических мембран.

Фосфатидилинозитолы отличаются от других групп глицерофосфолипидов тем, что в их состав вместо азотсодержащих веществ входит шестиатомный циклический спирт инозитол. Они присутствуют в клеточных мембранах животных, высших растений, микроорганизмов; особенно высоко их содержание в миелиновых оболочках нервных волокон.

Фосфатидилинозитол

Важную биологическую роль фосфатидилинозитолы выполняют в виде фосфорилированных производных, например таких, как инозитол-4,5-дифосфат, моноинозитол-1,4,5-трифосфат, участвуя как вторичные мессенжеры (посредники) в реализации Са2+-зависимых действий ряда гормонов.

Фосфатидилглицеролы в качестве заместителя содержат ещё одну молекулу глицерола, которая, как и другие заместители, присоединяется к фосфатидилу эфирной связью:

Фосфатидилглицерол

Фосфатидилглицеролы в значительных количествах обнаруживаются в бактериальных мембранах, а также в хлоропластах растений.

Кардиолипины можно рассматривать как производное фосфатидилгли-

церолов. у которых 3-гидроксигруппа второго остатка молекулы глицерола этерифицирована молекулой фосфатидной кислоты.

Кардиолипин (дифосфатидилглицерол)

Своим названием кардиолипин обязан сердечной мышце, из которой он был выделен впервые. Его содержание в плазматических мембранах клеток невелико, и в этом смысле кардиолипин относится к минорной фракции глицерофосфолипидов. Однако маркерным липидом он является для таких внутриклеточных органоидов, как митохондрии, в которых ему отведена исключительная роль в структурной организации и функционировании дыхательной цепи.

Плазмалогены − глицерофосфолипиды, у которых вместо остатка жирной кислоты при первом атоме углерода трехатомного спирта глицерола находится α- или β-ненасыщенный спирт, образующий простую эфирную связь с гидроксильной группой глицерола. При гидролизе этой эфирной связи образуется альдегид соответствующего спирта − фосфатидаль.

Плазмалогены бывают трех видов: фосфатидальэтаноламины, фосфатидальхолины и фосфатидальсерины. На долю плазмалогенов приходится около 10% фосфолипидов мозга и мышечной ткани. В тканях некоторых безпозвоночных их доля доходит до 25%, они обнаружены в эритроцитах, бактериальных мембранах и практически отсутствуют в растениях.

Общим свойством глицерофосфолипидов, объясняющим их важную роль в формировании билипидного матрикса как основы биологических мембран, играет амфипатичность их молекул, или, другими словами, наличие в их структуре гидрофобной и гидрофильной частей. Гидрофобная составляющая представлена алифатическими радикалами жирных кислот, которые ориентированы внутрь билипидного матрикса, формируя гидрофобную полость. Гидрофильная составляющая представлена остатком фосфорной кислоты и различными полярными группами,которые ориентированы в водную фазу. Наличие асимметрического атома углерода в молекуле создает условия для существования изомеров. Все природные глицерофосфолипиды относятся к L-ряду.

Глицерофосфолипиды существуют не только в диацильной форме. Под действием фосфолипазы А2 они теряют остаток жирной кислоты у второго атома углерода глицерола с образованием лизофосфолипида, при этом меняются их свойства. Так, например, накопление лизофосфатидилхолина в мембране эритроцитов вызывает их разрушение, поскольку лизофосфатидилхолин приобретает свойства детергента.

Сфинголипиды являются производными 18-атомного, ненасышенного дигидроксиаминоспирта – сфингозина или его насыщенного аналога – дигидросфингозина.

Сфингозин

Сфингозин ацетилируется различными ЖК, образуя семейство молекул, называемых церамидами. Они отличаются радикалами жирных кислот. Обычно это жирные кислоты от 18 до 26 атомов углерода. Жирная кислота связана со сфингозином через аминогруппу с образованием амидной связи.

Церамид

Гидроксильные группы сфингозина способны взаимодействовать с другими радикалами.

Сфинголипидом, наиболее распространенным в природе, является сфингомиелин, фосфохолиновое производное церамида. Сфингомиелины имеют амфипатические свойства, сформированные, с одной стороны, радикалом жирной кислоты и алифатической частью самого сфингозина, а с другой – полярной областью фосфохолина. Сфингомиелины находятся в мембранах животных и растительных клеток. Особенно ими богата нервная ткань; кроме того их можно выделить из ткани почек, печени, крови.

Сфингомиелины содержат преимущественно насыщенные и моноеновые жирные кислоты, имеющие 18-24 атомов углерода. В состав жирных кислот входит значительное количество лигноцериновой и нервоновой кислот.

Сфингомиелин

Гликолипиды – ещё одна большая и разнообразная группа сложных липидов, основу которых составляют церамиды, где водород их гидроксильной группы замещен на разные углеводные фрагменты. Если углевод представлен моносахаридом (чаще галактозой), образуется моногексозилцерамиды, часто называемые цереброзидами. Цереброзиды содержатся в тканях животных, растений и микроорганизмах.

Галактозилцерамиды является основными гликолипидами мозговой и нервной тканей, содержат различные жирные кислоты, в том числе цереброновую (С24:1, гидроксикислота).

Церамид β-галактоза

Галактоцереброзид

Гидроксил у третьего углеродного атома моносахарида может взаимодействовать с серной кислотой, или, другими словами, сульфатироваться. В этом случае образуется сульфатид, обладаюший свойствами кислот и поэтому называется кислым сфинголипидом. При физиологическом значении рН сульфатиды имеют отрицательный заряд. Почти 25% цереброзидов мозга находятся в сульфатированном состоянии. В других тканях содержатся, главным образом, глюкозилцерамиды.

Наиболее сложные по составу липиды – это ганглиозиды, к которым относятся более 60 видов. В их состав входят сфингозин, жирная кислота, несколько углеводов и, что особенно характерно, один или несколько остатков сиаловой кислоты.

Сиаловыми кислотами называют N-ацетильные производные нейраминовой кислоты, которая представляет собой продукт конденсации маннозамина и пировиноградной кислоты.

Сиаловая (N-ацетилнейраминовая) кислота

В свободном виде сиаловые кислоты обнаружены в спинномозговой жидкости, слизистой оболочке желудка, щитовидной железе человека, икре некоторых видов рыб. Наиболее важную биологическую роль выполняют, входя в состав биополимеров животных клеток (гликолипиды, гликопротеины, олигосахариды молока и т.п.).

Доминирующей сиаловой кислотой, наиболее часто встречающейся в ганглиозидах, является N-ацетилнейраминовая кислота (NeuNAc, NANA). Благодаря наличию карбоксильной группы в остатке N-ацетилнейраминовой кислоты все ганглиозиды являются кислыми соединениями. Углеводы представлены гексозами (D-глюкоза и D-галактоза) и гексозаминами (N-ацетилглюкозамин, чаще N-ацетилгалактозамин). Ганглиозиды могут содержать от двух до десяти и более углеводных остатков.

Ганглиозиды в больших количествах находятся в нервной ткани. В сером веществе мозга ганглиозиды составляют около 6% мембранных липидов.

Их выделяют из плазматических мембран эритроцитов, гепатоцитов, клеток селезенки и других тканей и органов.

Все ганглиозиды построены на основе моносиалоганглиозида Gm1, олигосахаридная цепь которогосодержит один остаток NANA.

Ганглиозид Gm1

Согласно номенклатуре ганглиозиды обозначаются буквой G, например Gm1. Буквами М, D, T и Q обозначают количество остатков сиаловой кислоты (моно-, ди, три- и т.д.). Цифра обозначает специфическую последовательность углеводов в ганглиозидах.

Ганглиозиды – специфические детерминанты межклеточного взаимодействия, т.к. они играют важную роль в росте и дифференцировке тканей. Их углеводные «головки» выступают над поверхностью клетки и служат специфическими рецепторами ряда пептидных гормонов и некоторых бактериальных токсинов. Ганглиозидов обладают высокой тканевой специфичностью и выступают в роли антигенов клеточной поверхности.