Классификация
Липиды бывают простые и сложные. Простые состоят из двух компонентов (например, нейтральные жиры содержат глицерин и жирные кислоты), а сложные – более чем из двух.
К простым липидам относятся жиры (триглицеролы или нейтральные жиры) и воски. Их обязательный компонент – жирные кислоты.
Жирные кислоты (ЖК) – это монокарбоновые кислоты с одной алифатической цепью, т.е. состоящие из одной карбоксильной группы и длинного неполярного хвоста.
Жирные кислоты природных липидов, как правило, содержат четное количество атомов углерода
Жирные кислоты подразделяются на предельные (или насыщенные) и непредельные (ненасыщенные). Предельные кислоты не содержат двойных связей. Непредельные кислоты содержат одну (мононенасыщенные) или несколько (полиненасыщенные) двойных связей:
СН3(СН2)nСН=СН(СН2)nСООН – мононенасыщенные;
СН3(СН2)n(СН=СНСН2)m(СН2)kСООН – полиненасыщенные
Двойные связи в природных полиненасыщенных жирных кислотах – изолированные (несопряженные). Как правило, связи имеют цис-конфигурацию, что придает таким молекулам дополнительную жесткость. Это имеет биологический смысл, т.к. такие молекулы входят в состав клеточных мембран.
Приведем их классификацию.
Из ненасыщенных ЖК чаще всего встречаются пальмитиновая и стеариновая.
С16:0 – сокращенное обозначение пальмитиновой кислоты – означает, что у нее 16 атомов углерода и нет двойных связей.
СН3(СН2)14СООН – другое обозначение пальмитиновой кислоты
С18:0 – стеариновая, СН3(СН2)16СООН
Кроме того, выделяются следующие насыщенные жирные кислоты:
С12:0 – лауриновая;
С14:0 – миристиновая;
С20:0 – арахиновая;
С22:0 – бегеновая;
С24:0 – лигноцериновая.
Моноеновые:
С 16 : 1 – пальмитоолеиновая
СН3(СН2)5СН=СН(СН2)7СООН;
С18:1 – олеиновая
СН3(СН2)7СН=СН(СН2)7СООН.
Положение двойной связи относительно карбоксильной группы обозначают знаком ∆9, где число показывает порядковый номер атома углерода, возле которого находится двойная связь. Таким образом, названные кислоты могуть быть обозначены соответственно С16:1, ∆9 и С18:1, ∆9.
Полиеновые кислоты чаще всего бывают с двумя и тремя двойными связями:
С18:2, ∆9 – линолевая, СН3(СН2)4(СН=СНСН2)2(СН2)6СООН;
С18:3, ∆9 – линоленовая, СН3СН2(СН=СНСН2)3(СН2)6СООН.
Иногда встречаются жирные кислоты (т.н. необычные), в алифатических цепях которых есть заместители: СН3-, -ОН, С=О и др.:
СН3
СН3(СН2)7-СН-(СН2)8СООН – туберкулостеариновая, С19:0, из туберкулезных палочек
С Н2
СН3(СН2)5-СН - СН(СН2)9СООН – лактобацилловая С19:0.
Жирные кислоты нерастворимы в воде, температура плавления понижается с увеличением числа двойных связей и укорочением цепи.
Такие жирные кислоты, как линолевая, линоленовая и им подобные (с двумя и тремя двойными связями), не синтезируются внутри организма человека и называются незаменимыми. Поэтому их необходимо получать с пищей.
При этом полиеновые кислоты делят на две группы: ω-3 и ω-6 (в зависимости от положения двойной связи от углеродного атома последней, метильной группы). Эти кислоты являются предшественниками разных групп гормонов местного действия – эйкозаноидов. Так, линолевая кислота является примером ω-6 кислот. В качестве примера ω-3 кислот можно привести тимнодоновую (эйкозапентановую) кислоту, С20:5 (ω-3). Она содержится в жире морских рыб, хотя имеет растительное происхождение, синтезируется фитопланктоном. Кроме того, такие рыбы как лосось, макрель, сельдь, сардина и др., поедая планктон, накапливают эту кислоту в своем жире. При употреблении человеком в пищу этой кислоты у него понижается свертываемость крови, что используется для профилактики сердечно-сосудистых заболеваний.
Воски
Воски – это сложные эфиры, образуемые длинноцепочечными жирными кислотами и длинноцепочечными спиртами (с числом углеродных атомов от 16 до 36). Воски широко распространены в природе. Восковое покрытие листьев и плодов растений защищает их от механических повреждений, уменьшает потери влаги, препятствует возникновению инфекции. У позвоночных воски, секретируемые кожными железами, выполняют функцию защитного покрытия, смазывающего и смягчающего кожу и предохраняющего ее от воды. Восковым секретом покрыты волосы. Перья птиц и шкура животных также имеют восковое покрытие, придающее им водоотталкивающие свойства. Воск овечьей шерсти – ланолин – широко используется в медицине и косметике как основа для приготовления мазей и кремов. Воск, вырабатываемый пчелами, служит строительным материалом сот:
Пчелиный воск
Воски являются нормальными метаболитами некоторых микроорганизмов. Природные воски наряду со сложными эфирами высших жирных кислот и высших спиртов содержат некоторое количество свободных жирных кислот, спиртов, а также углеводородов с нечетным числом атомов углерода (21-35), красящих и душистых веществ. Все воски представляют собой твердые вещества разнообразной окраски, устойчивые к действию света, окислителей, нагреванию. Температура их плавления – от 30 до 90о С.
Нейтральные жиры (триацилглицеролы, триглицериды)
Это сложные эфиры глицерина и жирных кислот. Нейтральные жиры бывают простыми и смешанными. Простые содержат одинаковые остатки жирных кислот, смешанные – остатки разных жирных кислот. В состав нейтральных жиров могут входить как насыщенные, так и ненасыщенные жирные кислоты.
Нейтральные жиры делятся на триацилглицериды, диацилглицериды и моноацилглицериды (в зависимости от количества жирных кислот, присоединенных к глицерину). Наиболее распространены триацилглицериды. Названия триацилглицеролов образуются от названий жирных кислот, входящих в их состав. Например, триацилглицерол, содержащий три остатка пальмитиновой кислоты, будет называться трипальмитин:
Если молекула содержит остатки различных жирных кислот, то в названии будут указаны все входящие в ее состав остатки с окончанием –оил и добавлением слова глицерол. Например, 1-стеароил, 2-линолеоил, 3-пальмитоил глицерол:
Физико-химические свойства триглицеридов определяются свойствами входящих в их состав жирных кислот. Как правило, животные триацилглицериды содержат больше насыщенных кислот, чем растительные, и поэтому тверже. Состав и качество жира характеризуются особыми параметрами, называемыми химическими константами триглицеридов:
1) йодное число – это количество граммов йода, которое связывается 100 граммами жира. Поскольку йод связывается только с двойными связями жирных кислот, йодное число характеризует степень ненасыщенности жира.
2) кислотное число – количество милиграммов гидрооксида калия, необходимое для нейтрализации 1 грамма жира. Указывает на количество свободных жирных кислот в жире.
3) число омыления ‒ количество милиграммов гидрооксида калия, необходимое для нейтрализации всех жирных кислот, свободных и связанных, входящих в состав жира.
- Лекции по курсу биохимия и молекулярная биология для студентов направления биология
- Оглавление
- Введение
- Модуль 1. Статическая биохимия
- Лекция 1
- Строение, свойства, биологическая роль
- Моно – и олигосахаридов
- Классификация углеводов
- Моносахариды
- Стереоизомерия моносахаридов
- Представители моносахаридов
- Олигосахариды
- Отдельные представители дисахаридов
- Лекция 2 строение, свойства, биологическая роль
- Отдельные представители полисахаридов
- Лекция 3 строение, свойства, биологическая роль простых липидов
- Классификация
- Стероиды
- Желчные кислоты
- Лекция 4 строение, свойства, биологическая роль сложных липидов
- Лекция 5 аминокислотный состав белков Белки и их функции
- Функции белков
- Элементарный состав белков
- Методы выделения и очистки белков
- Аминокислотный состав белков
- Химические свойства аминокислот
- Классификация аминокислот, заменимые и незаменимые аминокислоты
- Лекция 6 уровни структурной организации белков Структурная организация белков
- Первичная структура белка: методы исследования. Структурные особенности пептидной связи
- Номенклатура пептидов и полипептидов. Природные пептиды: глутатион, карнозин, ансерин, грамицидин s, окситоцин, энкефалины
- Отдельные представители пептидов
- Вторичная структура белков: -спираль, ее основные характеристики, -структура, -изгиб. Роль водородных связей в формировании вторичной структуры. Сверхвторичные (надвторичные) структуры белка
- Третичная структура белков. Типы нековалентных связей, стабилизирующих третичную структуру. Роль s-s-мостиков в формировании третичной структуры некоторых белков
- Заимодействия между субъединицами, стабилизирующие четвертичную структуру. Функциональное значение четвертичной структуры белков
- Лекция 7
- Физико-химические свойства белков
- Ионизация, гидратация, растворимость,
- Осмотические и онкотические свойства, оптические свойства
- Молекулярная масса и размеры белков. Методы определения молекулярной массы белков. Необходимость применения комплекса методов для точной оценки молекулярной массы белков
- Денатурация белков
- Лекция 8 классификация белков. Простые и сложные белки Принципы классификации белков
- Фибриллярные белки
- Глобулярные белки
- Сложные белки
- Липопротеины
- Гликопротеины
- Протеогликаны
- Фосфопротеины
- Металлопротеины
- Нуклеопротеины
- Хромопротеины
- Гемоглобин
- Миоглобин
- Цитохромы электронтранспортной цепи
- Хлорофиллы
- Флавопротеины
- Лекция 9 сложные белки Гликопротеины
- Фосфопротеины
- Липопротеины
- Металлопротеины
- Лекция 10 строение, свойства, биологическая роль нуклеотидов
- Циклические нуклеотиды
- Лекция 11 строение, свойства, биологическая роль нуклеиновых кислот
- Рибосомальные рнк
- Лекция 12 витамины – биологическая роль, классификация. Водорастворимые витамины
- Витамин в1 (тиамин)
- Витамин в2 (рибофлавин)
- Витамин в3 (рр, никотиновая кислота, никотинамид)
- Витамин в5 (пантотеновая кислота)
- Витамин в6 (пиридоксин, пиридоксаль, пиридоксамин)
- Витамин в9 (фолиевая кислота)
- Витамин в12 (кобалами)
- Витамин н (биотин)
- Витамин с (аскорбиновая кислота)
- Витамин р (рутин)
- Лекция 13 жирорастворимые витамины Витамин а (ретинол)
- Витамин d (кальциферол)
- Витамин е (токоферол)
- Витамин к (нафтохинон)
- Лекция 14
- Ферменты – строение: свойства, механизм действия
- Понятие о ферментах.
- Сущность явлений ферментативного катализа
- Структурная организация ферментов
- 3. Роль металлов в регуляции aктивности ферментов
- Изоферменты: биологическая роль
- Механизм действия ферментов
- Специфичность действия ферментов
- Стационарная кинетика ферментативных реакций
- Концентрация субстрата
- Концентрация фермента
- Температура
- Уравнение Михаэлиса-Ментен
- Единицы ферментов
- Лекция 15
- Ингибиторы ферментов
- Регуляция каталитичекой активности ферментов
- Изостерическая регуляция
- Аллостерический контроль активности ферментов
- Регуляция ферментов ковалентной модификацией
- Регуляция ферментов ограниченным протеолизом (активация зимогенов)
- Регуляция активности мультиэнзимных комплексов
- Классификация и номенклатура ферментов
- Характеристика отдельных классов ферментов
- Ферменты в клинической диагностике. Энзимопатии
- Модуль II. Динамическая биохимия
- Катаболические, анаболические, амфиболические пути
- Метаболизм углеводов
- Расщепление углеводов в пищеварительном тракте
- Переваривание углеводов в ротовой полости
- Переваривание углеводов в кишечнике
- Амилолитические ферменты: характеристика Панкреатическая -амилаза
- Сахаразо-изомальтазный комплекс
- Гликоамилазный комплекс
- Трегалаза
- Всасывание моносахаридов в тонком кишечнике и их дальнейший транспорт. Глюкозные транспортеры
- Всасывание моносахаридов в кишечнике
- Транспорт глюкозы из крови в клетки
- Лекция 17
- Анаэробный катаболизм углеводов
- Анаэробное окисление глюкозы. Гликолиз. Внутриклеточная
- Локализация процесса
- Отдельные реакции гликолиза, их термодинамические характеристики. Образование 2,3-дифосфоглицерата в шунте Рапопорта-Люберинга
- Расщепление гликогена (гликогенолиз). Строение, механизм действия и регуляция гликогенфосфорилазы
- Спиртовое и молочнокислое брожение
- Лекция 18
- Аэробный катаболизм углеводов (часть 1)
- Аэробный метаболизм пирувата. Митохондрии: структура
- И энергетические функции
- Окислительное декарбоксилирование пирувата. Строение
- Цикл лимонной кислоты. Отдельные реакции цикла, их термодинамическая характеристики. Суммарное уравнение окисления ацетил-CоА в цикле Кребса
- Лекция 19
- Аэробный катаболизм углеводов (часть 2)
- Регуляция цикла Кребса на уровне цитратсинтазы,
- Изоцитратдегидрогеназы и -кетоглутаратдегидрогеназного комплекса
- Амфиболическое значение цикла Кребса. Необходимость анаплеротических путей, пополняющих запас компонентов, участвующих в цикле
- Зависимое от атp и биотина карбоксилирование пирувата: анаплеротический путь синтеза оксалоацетата
- Пентозофосфатный путь (гексозомонофосфатный шунт)
- Отдельные реакции пфп, их термодинамические характеристики.
- Суммарное уравнение пентозофосфатного пути.
- Регуляция пентозофосфатного пути на уровне
- Глюкозо-6-фосфатдегидрогеназы
- Участки перекреста пфп с гликолизом
- Циклический характер пфп
- Лекция 20 биосинтез углеводов
- Глюконеогенез
- В последующей реакции, катализируемой ферментом фосфоенолпируваткарбоксикиназой, из оксалоацетата образуется фосфоенолпируват. Реакция Mg2-зависимая и донором фосфата служит gtp.
- Лекция 21 расщепление пищевых и тканевых липидов
- Катаболизм липидов
- Всасывание продуктов расщепления липидов
- Транспорт липидов
- Метаболизм глицерола
- Лекция 22 катаболизм жирных кислот
- Активация жирной кислоты
- Транспорт ацил-СоА в митохондрии
- Катаболизм ненасыщенных жирных кислот
- Катаболизм жирных кислот с нечетным числом атомов углерода
- Образование кетоновых тел (кетогенез)
- Кетоновые тела как источники энергии
- Глиоксилатный цикл
- Лекция 23 биосинтез жирных кислот и триацилглицеролов
- Строение синтазы жирных кислот
- Механизм синтеза жирных кислот
- Транспорт ацетил-СоА из митохондрий в цитозоль
- Образование малонил-СоА
- Наращивание (элонгация) углеродной цепи жирной кислоты
- Синтез других предельных и непредельных жк
- Биосинтез триацилглицеролов
- Лекция 24 биосинтез холестерола и желчных кислот
- Биосинтез холестерола
- Регуляция биосинтеза хс
- Биосинтез желчных кислот
- Лекция 25
- Биологическое окисление. Ферменты, участвующие в биологическом окислении
- Свободное окисление и его биологическая роль. Цитохром р-450
- Микросомальная система окисления
- Механизм гидроксилирования
- Лекция 26
- Цепь переноса электронов и протонов внутренней мембраны
- Митохондрий (дыхательная цепь, редокс-цепь). Компоненты
- Дыхательной цепи: флавопротеины, железосерные белки, коэнзим q, цитохромы в, с1, с, аа3. Топография дыхательных переносчиков
- В редокс-цепи
- Убихинон окисленный CoQ
- Энергетическое значение ступенчатого транспорта электронов от окисляемых субстратов к молекулярному кислороду. Окислительное фосфорилирование в дыхательной цепи
- Организация компонентов дыхательной цепи в виде четырех
- Локализация пунктов сопряжения окисления и фосфорилирования в дыхательной цепи на основании редокс-потенциалов, действия специфических ингибиторов (ротенон, амитал, антимицин а, цианид, со, NaN3)
- Полные и редуцированные дыхательные цепи
- Лекция 27
- Строение атp-синтазного комплекса. Механизм образования атp. Обратимость реакции, катализируемой атp-синтазой. Разобщение транспорта электронов и синтеза атp; действие 2,4-динитрофенола
- Механизм образования атp
- Окисление цитоплазматического nadh в дыхательной цепи. Глицеролфосфатный и малат-аспартатный челночные механизм
- Лекция 28 интеграция клеточного метаболизма
- Основные аспекты регуляции метаболизма
- Регуляция на уровне транскрипции
- Аллостерическая регуляция активности ферментов
- Ковалентная модификация ферментов
- Гормональная регуляция
- Посттранскрипционная и посттрансляционная модификация макромолекул
- Изменение концентрации метаболитов
- Мембранная регуляция
- Модуль III. Молекулярная биология лекция 29 репликация днк
- Точность репликации
- Репликация днк у эукариот
- Репаративный синтез днк
- Лекция 30 транскрипция (биосинтез рнк)
- Транскрипция у прокариот
- Инициация транскрипции
- Элонгация транскрипции
- Терминация транскрипции
- Транскрипция у эукариот
- Механизм индукции на примере Lac-оперона
- Катаболитная репрессия
- Лекция 31 тРансляция (биосинтез белка)
- Роль тРнк в трансляции
- Аминоацил-тРнк-синтетазы
- Белоксинтезирующая система клетки
- Эффективность трансляции
- Точность белкового синтеза
- Энергетические затраты на трансляцию
- Посттрансляционные модификации полипептидной цепи
- Библиографический список Основная литература
- Дополнительная литература