Локализация процесса
Гликолиз (от гр. glycys – сладкий + lysis – растворение, распад) – это последовательность ферментативных реакций, приводящих к превращению глюкозы в пируват с одновременным образованием ATP.
При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до СО2 и Н2О. Если содержание кислорода недостаточно, как, например, в активно сокращающейся мышце, пируват превращается в лактат. Таким образом, гликолиз – это не только главный путь утилизации глюкозы в клетках, но и уникальный путь, поскольку он может использовать кислород, если последний доступен (аэробные условия), но может протекать и в его отсутствие (анаэробные условия). Кроме того, на промежуточных стадиях образуются трехуглеродные фрагменты, которые используются для биосинтеза ряда веществ.
Анаэробный гликолиз – сложный ферментативный процесс распада глюкозы, протекающий в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется ATP. Суммарное уравнение гликолиза можно представить следующим образом:
В анаэробных условиях гликолиз – единственный процесс в животном организме, поставляющий энергию. Именно благодаря ему организм человека и животных определенный период может осуществлять ряд физиологических функций в условиях недостаточности кислорода.
Внутриклеточно гликолиз локализуется в цитоплазматическом компартменте. При этом установлено, что гликолитические ферменты способны связываться с мышечными белками. На долю F-актина приходится больше связанных ферментов гликолиза, чем на долю миозина, актомиозина или белков стромы. Из ферментов наибольшим сродством к F-актину обладает альдолаза и несколько меньшим – глицеральдегид-3-фосфатдегидрогеназа (ГАФДГ). Среди других ферментов, проявляющих определенную склонность к связыванию, необходимо отметить фосфофруктокиназу (ФФК), 3-фосфоглицераткиназу, пируваткиназу (ПК) и лактатдегидрогеназу (ЛДГ).
Доказано существование надмолекулярной структурной организации основных ферментов на внутренней стороне мембраны эритроцитов. Предполагаемая схема расположения гликолитических ферментов на мембране эритроцитов представлена на рис. 17.1. Димеры белка третьей полосы представлены как погруженные в мембрану гексагональные структуры. Их N-концы формируют в липидном бислое каналы для анионов и выступают в цитоплазму. Поскольку тетрамеры спектрина, прикрепленные к мономерам актина, оставляют свободными достаточно большие участки на поверхности мембраны, предполагают, что сквозь эту сеть могут проникать ферменты, гемоглобин и белок третьей полосы. На рис. 17.1 в масштабе изображены только ферменты и гемоглобин: они представлены сечениями сфер, объемы которых пропорциональны соответствующим молекулярным массам.
а
б
Рис. 17.1. Расположение гликолитических ферментов на мембране эритроцитов: а – общая схема расположения; б – примерное расположение участков связывания некоторых белков на N-конце белка третьей полосы
- Лекции по курсу биохимия и молекулярная биология для студентов направления биология
- Оглавление
- Введение
- Модуль 1. Статическая биохимия
- Лекция 1
- Строение, свойства, биологическая роль
- Моно – и олигосахаридов
- Классификация углеводов
- Моносахариды
- Стереоизомерия моносахаридов
- Представители моносахаридов
- Олигосахариды
- Отдельные представители дисахаридов
- Лекция 2 строение, свойства, биологическая роль
- Отдельные представители полисахаридов
- Лекция 3 строение, свойства, биологическая роль простых липидов
- Классификация
- Стероиды
- Желчные кислоты
- Лекция 4 строение, свойства, биологическая роль сложных липидов
- Лекция 5 аминокислотный состав белков Белки и их функции
- Функции белков
- Элементарный состав белков
- Методы выделения и очистки белков
- Аминокислотный состав белков
- Химические свойства аминокислот
- Классификация аминокислот, заменимые и незаменимые аминокислоты
- Лекция 6 уровни структурной организации белков Структурная организация белков
- Первичная структура белка: методы исследования. Структурные особенности пептидной связи
- Номенклатура пептидов и полипептидов. Природные пептиды: глутатион, карнозин, ансерин, грамицидин s, окситоцин, энкефалины
- Отдельные представители пептидов
- Вторичная структура белков: -спираль, ее основные характеристики, -структура, -изгиб. Роль водородных связей в формировании вторичной структуры. Сверхвторичные (надвторичные) структуры белка
- Третичная структура белков. Типы нековалентных связей, стабилизирующих третичную структуру. Роль s-s-мостиков в формировании третичной структуры некоторых белков
- Заимодействия между субъединицами, стабилизирующие четвертичную структуру. Функциональное значение четвертичной структуры белков
- Лекция 7
- Физико-химические свойства белков
- Ионизация, гидратация, растворимость,
- Осмотические и онкотические свойства, оптические свойства
- Молекулярная масса и размеры белков. Методы определения молекулярной массы белков. Необходимость применения комплекса методов для точной оценки молекулярной массы белков
- Денатурация белков
- Лекция 8 классификация белков. Простые и сложные белки Принципы классификации белков
- Фибриллярные белки
- Глобулярные белки
- Сложные белки
- Липопротеины
- Гликопротеины
- Протеогликаны
- Фосфопротеины
- Металлопротеины
- Нуклеопротеины
- Хромопротеины
- Гемоглобин
- Миоглобин
- Цитохромы электронтранспортной цепи
- Хлорофиллы
- Флавопротеины
- Лекция 9 сложные белки Гликопротеины
- Фосфопротеины
- Липопротеины
- Металлопротеины
- Лекция 10 строение, свойства, биологическая роль нуклеотидов
- Циклические нуклеотиды
- Лекция 11 строение, свойства, биологическая роль нуклеиновых кислот
- Рибосомальные рнк
- Лекция 12 витамины – биологическая роль, классификация. Водорастворимые витамины
- Витамин в1 (тиамин)
- Витамин в2 (рибофлавин)
- Витамин в3 (рр, никотиновая кислота, никотинамид)
- Витамин в5 (пантотеновая кислота)
- Витамин в6 (пиридоксин, пиридоксаль, пиридоксамин)
- Витамин в9 (фолиевая кислота)
- Витамин в12 (кобалами)
- Витамин н (биотин)
- Витамин с (аскорбиновая кислота)
- Витамин р (рутин)
- Лекция 13 жирорастворимые витамины Витамин а (ретинол)
- Витамин d (кальциферол)
- Витамин е (токоферол)
- Витамин к (нафтохинон)
- Лекция 14
- Ферменты – строение: свойства, механизм действия
- Понятие о ферментах.
- Сущность явлений ферментативного катализа
- Структурная организация ферментов
- 3. Роль металлов в регуляции aктивности ферментов
- Изоферменты: биологическая роль
- Механизм действия ферментов
- Специфичность действия ферментов
- Стационарная кинетика ферментативных реакций
- Концентрация субстрата
- Концентрация фермента
- Температура
- Уравнение Михаэлиса-Ментен
- Единицы ферментов
- Лекция 15
- Ингибиторы ферментов
- Регуляция каталитичекой активности ферментов
- Изостерическая регуляция
- Аллостерический контроль активности ферментов
- Регуляция ферментов ковалентной модификацией
- Регуляция ферментов ограниченным протеолизом (активация зимогенов)
- Регуляция активности мультиэнзимных комплексов
- Классификация и номенклатура ферментов
- Характеристика отдельных классов ферментов
- Ферменты в клинической диагностике. Энзимопатии
- Модуль II. Динамическая биохимия
- Катаболические, анаболические, амфиболические пути
- Метаболизм углеводов
- Расщепление углеводов в пищеварительном тракте
- Переваривание углеводов в ротовой полости
- Переваривание углеводов в кишечнике
- Амилолитические ферменты: характеристика Панкреатическая -амилаза
- Сахаразо-изомальтазный комплекс
- Гликоамилазный комплекс
- Трегалаза
- Всасывание моносахаридов в тонком кишечнике и их дальнейший транспорт. Глюкозные транспортеры
- Всасывание моносахаридов в кишечнике
- Транспорт глюкозы из крови в клетки
- Лекция 17
- Анаэробный катаболизм углеводов
- Анаэробное окисление глюкозы. Гликолиз. Внутриклеточная
- Локализация процесса
- Отдельные реакции гликолиза, их термодинамические характеристики. Образование 2,3-дифосфоглицерата в шунте Рапопорта-Люберинга
- Расщепление гликогена (гликогенолиз). Строение, механизм действия и регуляция гликогенфосфорилазы
- Спиртовое и молочнокислое брожение
- Лекция 18
- Аэробный катаболизм углеводов (часть 1)
- Аэробный метаболизм пирувата. Митохондрии: структура
- И энергетические функции
- Окислительное декарбоксилирование пирувата. Строение
- Цикл лимонной кислоты. Отдельные реакции цикла, их термодинамическая характеристики. Суммарное уравнение окисления ацетил-CоА в цикле Кребса
- Лекция 19
- Аэробный катаболизм углеводов (часть 2)
- Регуляция цикла Кребса на уровне цитратсинтазы,
- Изоцитратдегидрогеназы и -кетоглутаратдегидрогеназного комплекса
- Амфиболическое значение цикла Кребса. Необходимость анаплеротических путей, пополняющих запас компонентов, участвующих в цикле
- Зависимое от атp и биотина карбоксилирование пирувата: анаплеротический путь синтеза оксалоацетата
- Пентозофосфатный путь (гексозомонофосфатный шунт)
- Отдельные реакции пфп, их термодинамические характеристики.
- Суммарное уравнение пентозофосфатного пути.
- Регуляция пентозофосфатного пути на уровне
- Глюкозо-6-фосфатдегидрогеназы
- Участки перекреста пфп с гликолизом
- Циклический характер пфп
- Лекция 20 биосинтез углеводов
- Глюконеогенез
- В последующей реакции, катализируемой ферментом фосфоенолпируваткарбоксикиназой, из оксалоацетата образуется фосфоенолпируват. Реакция Mg2-зависимая и донором фосфата служит gtp.
- Лекция 21 расщепление пищевых и тканевых липидов
- Катаболизм липидов
- Всасывание продуктов расщепления липидов
- Транспорт липидов
- Метаболизм глицерола
- Лекция 22 катаболизм жирных кислот
- Активация жирной кислоты
- Транспорт ацил-СоА в митохондрии
- Катаболизм ненасыщенных жирных кислот
- Катаболизм жирных кислот с нечетным числом атомов углерода
- Образование кетоновых тел (кетогенез)
- Кетоновые тела как источники энергии
- Глиоксилатный цикл
- Лекция 23 биосинтез жирных кислот и триацилглицеролов
- Строение синтазы жирных кислот
- Механизм синтеза жирных кислот
- Транспорт ацетил-СоА из митохондрий в цитозоль
- Образование малонил-СоА
- Наращивание (элонгация) углеродной цепи жирной кислоты
- Синтез других предельных и непредельных жк
- Биосинтез триацилглицеролов
- Лекция 24 биосинтез холестерола и желчных кислот
- Биосинтез холестерола
- Регуляция биосинтеза хс
- Биосинтез желчных кислот
- Лекция 25
- Биологическое окисление. Ферменты, участвующие в биологическом окислении
- Свободное окисление и его биологическая роль. Цитохром р-450
- Микросомальная система окисления
- Механизм гидроксилирования
- Лекция 26
- Цепь переноса электронов и протонов внутренней мембраны
- Митохондрий (дыхательная цепь, редокс-цепь). Компоненты
- Дыхательной цепи: флавопротеины, железосерные белки, коэнзим q, цитохромы в, с1, с, аа3. Топография дыхательных переносчиков
- В редокс-цепи
- Убихинон окисленный CoQ
- Энергетическое значение ступенчатого транспорта электронов от окисляемых субстратов к молекулярному кислороду. Окислительное фосфорилирование в дыхательной цепи
- Организация компонентов дыхательной цепи в виде четырех
- Локализация пунктов сопряжения окисления и фосфорилирования в дыхательной цепи на основании редокс-потенциалов, действия специфических ингибиторов (ротенон, амитал, антимицин а, цианид, со, NaN3)
- Полные и редуцированные дыхательные цепи
- Лекция 27
- Строение атp-синтазного комплекса. Механизм образования атp. Обратимость реакции, катализируемой атp-синтазой. Разобщение транспорта электронов и синтеза атp; действие 2,4-динитрофенола
- Механизм образования атp
- Окисление цитоплазматического nadh в дыхательной цепи. Глицеролфосфатный и малат-аспартатный челночные механизм
- Лекция 28 интеграция клеточного метаболизма
- Основные аспекты регуляции метаболизма
- Регуляция на уровне транскрипции
- Аллостерическая регуляция активности ферментов
- Ковалентная модификация ферментов
- Гормональная регуляция
- Посттранскрипционная и посттрансляционная модификация макромолекул
- Изменение концентрации метаболитов
- Мембранная регуляция
- Модуль III. Молекулярная биология лекция 29 репликация днк
- Точность репликации
- Репликация днк у эукариот
- Репаративный синтез днк
- Лекция 30 транскрипция (биосинтез рнк)
- Транскрипция у прокариот
- Инициация транскрипции
- Элонгация транскрипции
- Терминация транскрипции
- Транскрипция у эукариот
- Механизм индукции на примере Lac-оперона
- Катаболитная репрессия
- Лекция 31 тРансляция (биосинтез белка)
- Роль тРнк в трансляции
- Аминоацил-тРнк-синтетазы
- Белоксинтезирующая система клетки
- Эффективность трансляции
- Точность белкового синтеза
- Энергетические затраты на трансляцию
- Посттрансляционные модификации полипептидной цепи
- Библиографический список Основная литература
- Дополнительная литература