§ 19. Особенности строения клеток прокариот
По строению клеток все живые организмы делятся на две группы: прокариоты и эукариоты. Прокариоты (от лат. про — перед, вместо и греч. карион — ядро) — доядерные организмы, клетки которых не имеют оформленого ядра. К прокариотам относятся Настоящие бактерии, Цианобактерии. Эукариоты (от греч. эу — полностью, хорошо и карион — ядро) – ядерные организмы (их клетки имеют ядро). Эукариотами являются протисты, грибы, растения и животные. Каковы отличительные признаки прокариотических клеток по сравнению с эукариотическими?
Размеры клеток прокариот, как правило, значительно меньше, чем у эукариот и находятся в пределах 0,2 — 10 мкм. Правда, есть и исключения — описана огромная бактериальная клетка длиной 100 мкм.
Форма клеток прокариот разнообразна: шаровидная (кокки), палочковидная (бациллы), в виде изогнутой (вибрионы) или спирально закрученной (спириллы) палочки и др.
Поверхностный аппарат клеток прокариот состоит из цитоплазматической мембраны (одной или двух), клеточной муреиновой оболочки, а у некоторых групп бактерий еще дополнительной слизистой капсулы.
Строение плазмалеммы сходно с таковой у эукариот. Клеточная мембрана прокариот образует многочисленные впячивания внутрь клетки — мезосомы. На них располагаются ферменты, обеспечивающие протекание разнообразных реакций обмена веществ.
Клеточная оболочка бактерий существенно отличается по строению от оболочек клеток растений и грибов. В ней есть особая жесткая решетка, состоящая из муреина. Муреин (от лат. мурус — стенка) это —полисахарид, состоящий из чередующихся остатков двух аминосахаров. Молекула муреина представляет собой правильную сеть из параллельно расположенных полисахаридных цепей, сшитых друг с другом короткими пептидными цепочками (рис. ). Таким образом, каждая бактериальная клетка окружена сетевидным муреиновым мешком, образованным, по сути дела, одной молекулой.
По строению клеточной стенки бактерии подразделяются на две группы — грамположительные (окрашиваются по Граму в фиолетовый цвет) и грамотрицательные (обесцвечиваются при отмывке красителя, поэтому при окраске по Граму приобретают розовый цвет).
У грамположительных бактерий муреиновая сеть многослойная. Кроме того, в нее встроены другие вещества, главным образом белки и полисахариды.
У грамотрицательных бактерий клеточная оболочка тоньше, чем у грамположительных, но устроена она сложнее (рис. ). У этих бактерий снаружи от муреинового слоя расположен дополнительный слой клеточной оболочки — наружная мембрана. Она состоит из фосфолипидов и белков. Наличие наружной мембраны у грамотрицательных бактерий значительно расширяет круг функций клеточной стенки. Так, наружная мембрана осуществляет регуляцию транспорта веществ и ионов, необходимых клетке. Кроме того, она препятствует проникновению в клетку токсичных веществ, что делает грамотрицательные бактерии более устойчивыми по сравнению с грамположительными к действию некоторых ядов, химических веществ, ферментов, антибиотиков.
Снаружи клеточная стенка прокариот часто бывает окружена слизистым чехлом, или капсулой, которая также выполняет защитную функцию.
Прокариоты, как следует из их названия, не имеют оформленного ядра. Их ядерное вещество представлено, как правило, единственной кольцевой молекулой ДНК, которая условно называется бактериальной хромосомой. Молекула ДНК располагается непосредственно в цитоплазме (рис. ). Область цитоплазмы, в которой расположена ДНК называется нуклеоид. Помимо крупной кольцевой молекулы ДНК в бактериальных клетках могут содержаться маленькие кольцевые двуцепочечные молекулы ДНК — плазмиды.
Бактериальные клетки, помимо ядра, не имеют и большинства органелл, характерных для клеток эукариот — митохондрий, пластид, эндоплазматической сети, комплекса Гольджи, лизосом, клеточного центра. Однако в их цитоплазме располагаются многочисленные рибосомы, которые имеют сходное строение с рибосомами эукариот, но отличаются меньшими размерами. У некоторых бактерий — обитателей водоемов или капилляров почвы, заполненных водой, имеются особые газовые вакуоли. Изменяя в них объем газов, эти бактерии могут перемещаться в толще водной среды (всплывать, погружаться) с минимальными затратами энергии. В клетках цианобактерий обнаружены округлые замкнутые мембранные структуры — хроматофоры (от греч. хрома — краска и форос — несущий), в которых расположены фотосинтезирующие пигменты.
Цитоскелета в прокариотических клетках тоже нет. У некоторых прокариот имеются органоиды движения — один, несколько или много жгутиков. Жгутики могут быть длиннее самой клетки в несколько раз, однако их диаметр незначительный (10 — 25 нм), поэтому в световой микроскоп они не видны.
В отличие от эукариот, большинство из которых являются аэробами, т. е. используют в энергетическом обмене кислород, многие прокариоты являются анаэробами, и кислород для них вреден. Некоторые бактерии, называемые азотфиксирующими, способны усваивать азот воздуха, чего эукариоты делать не могут.
В неблагоприятных условиях (холод, жара, засуха и т. д.) многие бактерии способны образовывать споры. При спорообразовании вокруг бактериальной хромосомы образуется плотная многослойная оболочка. Споры устойчивы к действию высокой температуры (в некоторых случаях могут выдерживать длительное кипячение), ионизирующего излучения, химических веществ и другим факторам. Спора может десятилетиями находиться в неактивном состоянии, а в благоприятных условиях из нее снова прорастает активная бактерия.
Большинство прокариот — одноклеточные организмы, но среди них есть и колониальные формы. Скопления клеток прокариот могут иметь вид нитей, гроздей и т. д., иногда они окружены общей слизистой капсулой.
1. Чем клетки прокариот по строению отличаются от клеток эукариот? 2. Какую форму имеет ДНК бактерий? 3. Что собой представляет нуклеоид? 4. Что такое мезосомы и какие функции они выполняют? 5. Известно, что у клеток прокариот отсутствуют такие органеллы, как пластиды, митохондрии, комплекс Гольджи, эндоплазматическая сеть. Каким образом их клетки могут функционировать без этих оранелл?
- Глава 8. Селекция и биотехнология
- Введение
- Глава 1. Химические компоненты живых организмов § 1. Содержание химических элементов в организме. Макро- и микроэлементы
- § 2. Неорганические вещества
- § 3. Органические вещества. Аминокислоты. Белки
- § 4. Свойства и функции белков
- § 5. Углеводы
- § 6. Липиды, их строение и функции
- § 7. Нуклеиновые кислоты
- § 8. Атф. Биологически активные вещества
- Глава 2. Клетка – структурная и функциональная единица живых организмов
- § 9. История открытия клетки. Создание клеточной теории
- § 10. Методы изучения клетки
- § 11. Строение клетки
- § 12. Цитоплазматическая мембрана
- § 13. Гиалоплазма. Цитоскелет.
- § 14. Клеточный центр. Рибосомы
- § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизомосы
- § 16. Вакуоли
- § 17. Митохондрии. Пластиды
- § 18. Ядро
- § 19. Особенности строения клеток прокариот
- § 20. Особенности строения клеток эукариот
- Глава 3. Деление клетки
- § 21. Клеточный цикл
- § 22. Митоз. Амитоз. Прямое бинарное деление
- § 23. Мейоз и его биологическое значение
- Глава 4. Обмен веществ и превращение энергии в организме
- § 24. Общая характеристика обмена веществ и превращения энергии
- § 25. Энергетический обмен
- § 26. Брожение
- § 27. Фотосинтез
- § 28. Хранение наследственной информации
- § 29. Реализация наследственной информации — синтез белка на рибосомах
- § 30. Регуляция транскрипции и трансляции в клетке и организме
- Глава 5. Структурная организация и регуляция функций живых организмов § 31. Структурная организация живых организмов
- § 32. Ткани и органы растений
- § 33. Ткани и системы органов животных
- § 34. Саморегуляция жизненных функций организмов
- § 35. Иммунная регуляция
- § 36. Специфическая иммунная защита организма
- § 37. Иммунологическая реакция организма (иммунный ответ)
- Глава 6. Размножение и индивидуальное развитие организмов
- § 38. Типы размножения организмов. Бесполое размножение
- § 39. Половое размножение. Образование половых клеток
- § 40. Оплодотворение
- § 41. Онтогенез. Эмбриональное развитие животных
- § 42. Постэмбриональное развитие
- § 43. Онтогенез человека
- Глава 7. Наследственность и изменчивость организмов
- § 44. Закономерности наследования признаков, установленные г. Менделем. Моногибридное скрещивание. Первый и второй законы Менделя
- § 45. Цитологические основы наследования признаков при моногибридном скрещивании
- § 46. Дигибридное скрещивание. Третий закон Менделя
- § 47. Взаимодействие аллельных генов
- § 48. Хромосомная теория наследственности. Сцепленное наследование
- § 49. Генетика пола
- § 50. Изменчивость организмов, ее типы. Модификационная изменчивость
- § 51. Генотипическая изменчивость
- § 52.Особенности наследственности и изменчивости человека
- § 53. Наследственные болезни человека
- Глава 8. Селекция и биотехнология
- § 54. Cелекции, ее задачи и основные направления
- § 55 . Методы селекции и ее достижения
- § 56. 0Сновные направления биотехнологии
- § 57. Инструменты генетической инженерии
- § 58. Успехи и достижения генетической инженерии