§ 13. Гиалоплазма. Цитоскелет.
Гиалоплазма (основное вещество цитоплазмы, основная плазма) представляет собой густой бесцветный коллоидный раствор. Основа гиалоплазмы — вода (70 – 90 %). В гиалоплазме много белков, присутствуют также липиды и различные неорганические соединения. Здесь же в растворенном виде находится большое количество аминокислот, нуклеотидов и других «строительных блоков» биополимеров, а также множество промежуточных продуктов, возникающих при синтезе и распаде макромолекул. Гиалоплазма выполняет многочисленные функции в клетке. Она является внутренней средой клетки, в которой размещаются все внутриклеточные структуры и протекают процессы обмена веществ. В гиалоплазме локализованы ферменты, участвующие в синтезе аминокислот, нуклеотидов, высших карбоновых кислот, в метаболизме сахаров.
Гиалоплазма объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними.
Цитоскелет (внутриклеточный цитоплазматический скелет) — составная часть цитоплазмы, ее механический каркас. Цитоскелет представляет собой сложную трехмерную сеть микрофиламентов и микротрубочек (рис. ).
Микрофиламенты — тонкие белковые фибриллы, состоящие из двух спирально закрученных одна вокруг другой нитей. Каждая нить образована глобулами белка актина (рис. ).
В клетке обнаруживаются также фибриллы другого важного белка — миозина, которые вместе с актиновыми микрофиламентами образуют комплекс, способный к сокращению при расщеплении АТФ.
Микротрубочки содержатся во всех эукариотических клетках. Они представляют собой тонкие полые неразветвленные цилиндры, образованные субъединицами белка тубулина (рис. ).
Цитоскелет выполняет различные функции. Например, он упорядочивает размещение всех структурных компонентов клетки. Микротрубочки цитоскелета поддерживают определенную форму клетки. Они расположены таким образом, чтобы противодействовать растяжению и сжатию клетки. Кроме механических функций, микротрубочки обеспечивают внутриклеточный транспорт: перемещение внутриклеточных структур, эндо- и экзоцитоз. По микротрубочкам органеллы передвигаются в те места клетки, где они нужны в данный момент. Микротрубочки принимают непосредственное участие в образовании веретена деления при митозе и в растягивании хромосом к полюсам клетки.
Микрофиламенты взаимодействуют с микротрубочками поверхностного слоя цитоплазмы и с плазмалеммой и обеспечивают двигательную активность гиалоплазмы, а также амебоидное движение одноклеточных организмов.
Основная работа по перемещению клеток или их внутренних компонентов с помощью микрофиламентов происходит за счет работы актин-миозинового комплекса, где актиновые фибриллы играют роль направляющих («рельсы»), а миозиновые являются транслокаторами («моторами»). Последние могут связываться с мембранными или фибриллярными компонентами клетки и тем самым участвовать в их перемещении.
В миозиновой фибрилле есть головная (моторная) часть, отвечающая за АТФазную активность актин-миозинового комплекса, участвующего, например, в мышечном сокращении. Сократительный аппарат мышц содержит огромное количество актиновых и миозиновых фибрилл.
Механизм работы актин-миозиновых комплексов заключается в следующем. Моторная часть миозиновой фибриллы связывается с актиновым филаментом. Далее происходит ее изгибание и последующее открепление (рис.). При изгибании миозиновая головка перемещается в направлении одного конца актинового филамента на 5—25 нм (при этом происходит гидролиз одной молекулы АТФ). Таким образом происходит однонаправленное смещение или скольжение микрофиламентов относительно молекул миозина (рис. ).
Элементы цитоскелета очень динамичны. В определенных участках клетки при изменении внешних и внутренних условий они могут распадаться на отдельные молекулы и вновь собираться. Образующиеся молекулы белка переходят в раствор в составе гиалоплазмы. При этом они изменяют агрегатное состояние гиалоплазмы с гелеобразного (гель) на жидкое (золь). При полимеризации белковых субъединиц и сборке микротрубочек и микрофиламентов наблюдается обратный процесс.
1. Что представляет собой гиалоплазма, как она организована и какие функции выполняет? 2. Что такое цитоскелет, какова его организация и функции? 3. В каких состояниях может находиться гиалоплазма? Охарактеризуйте их. С чем связано изменение агрегатного состояния гиалоплазмы?
- Глава 8. Селекция и биотехнология
- Введение
- Глава 1. Химические компоненты живых организмов § 1. Содержание химических элементов в организме. Макро- и микроэлементы
- § 2. Неорганические вещества
- § 3. Органические вещества. Аминокислоты. Белки
- § 4. Свойства и функции белков
- § 5. Углеводы
- § 6. Липиды, их строение и функции
- § 7. Нуклеиновые кислоты
- § 8. Атф. Биологически активные вещества
- Глава 2. Клетка – структурная и функциональная единица живых организмов
- § 9. История открытия клетки. Создание клеточной теории
- § 10. Методы изучения клетки
- § 11. Строение клетки
- § 12. Цитоплазматическая мембрана
- § 13. Гиалоплазма. Цитоскелет.
- § 14. Клеточный центр. Рибосомы
- § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизомосы
- § 16. Вакуоли
- § 17. Митохондрии. Пластиды
- § 18. Ядро
- § 19. Особенности строения клеток прокариот
- § 20. Особенности строения клеток эукариот
- Глава 3. Деление клетки
- § 21. Клеточный цикл
- § 22. Митоз. Амитоз. Прямое бинарное деление
- § 23. Мейоз и его биологическое значение
- Глава 4. Обмен веществ и превращение энергии в организме
- § 24. Общая характеристика обмена веществ и превращения энергии
- § 25. Энергетический обмен
- § 26. Брожение
- § 27. Фотосинтез
- § 28. Хранение наследственной информации
- § 29. Реализация наследственной информации — синтез белка на рибосомах
- § 30. Регуляция транскрипции и трансляции в клетке и организме
- Глава 5. Структурная организация и регуляция функций живых организмов § 31. Структурная организация живых организмов
- § 32. Ткани и органы растений
- § 33. Ткани и системы органов животных
- § 34. Саморегуляция жизненных функций организмов
- § 35. Иммунная регуляция
- § 36. Специфическая иммунная защита организма
- § 37. Иммунологическая реакция организма (иммунный ответ)
- Глава 6. Размножение и индивидуальное развитие организмов
- § 38. Типы размножения организмов. Бесполое размножение
- § 39. Половое размножение. Образование половых клеток
- § 40. Оплодотворение
- § 41. Онтогенез. Эмбриональное развитие животных
- § 42. Постэмбриональное развитие
- § 43. Онтогенез человека
- Глава 7. Наследственность и изменчивость организмов
- § 44. Закономерности наследования признаков, установленные г. Менделем. Моногибридное скрещивание. Первый и второй законы Менделя
- § 45. Цитологические основы наследования признаков при моногибридном скрещивании
- § 46. Дигибридное скрещивание. Третий закон Менделя
- § 47. Взаимодействие аллельных генов
- § 48. Хромосомная теория наследственности. Сцепленное наследование
- § 49. Генетика пола
- § 50. Изменчивость организмов, ее типы. Модификационная изменчивость
- § 51. Генотипическая изменчивость
- § 52.Особенности наследственности и изменчивости человека
- § 53. Наследственные болезни человека
- Глава 8. Селекция и биотехнология
- § 54. Cелекции, ее задачи и основные направления
- § 55 . Методы селекции и ее достижения
- § 56. 0Сновные направления биотехнологии
- § 57. Инструменты генетической инженерии
- § 58. Успехи и достижения генетической инженерии