3. Основные принципы термодинамики. Значение законов термодинамики в описании явлений природы
Статистическое описание природы находит свое воплощение в термодинамике. Термодинамика базируется на двух основных законах.
Закон сохранения энергии. Он выполняется во всех явлениях природы и подтверждается опытом человечества.
Q = U – A, где U – внутренняя энергия, A – работа.
Тепло, сообщенное системе, расходуется на увеличение ее внутренней энергии и на совершение работы против внешних сил. В другой редакции этот закон звучит так: нельзя построить действующую машину, которая бы совершала работу, больше подводимой к ней извне энергии (вечный двигатель первого рода невозможен).
Тепловые процессы протекают самопроизвольно только в определенном направлении, такие процессы называются необратимыми. То есть тепло перетекает от более нагретого тела к менее нагретому.
Второе начало термодинамики указывает на существование двух форм энергии – теплоты (связанной с неупорядоченным, хаотическим движением) и работы, связанной с упорядоченным движением. Немецкий физик Р. Клаузиус использовал для формулировки второго закона термодинамики понятие энтропии, которое впоследствии австрийский физик Л. Больцман интерпретировал в терминах изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок (хаос) в системе.
Энтропия замкнутой системы, т.е. системы, которая не обменивается с окружением ни энергией, ни веществом, постоянно возрастает (второе начало термодинамики).
Таким образом, такие системы эволюционируют в сторону увеличения в них беспорядка, хаоса и дезорганизации, пока не достигнут точки термодинамического равновесия, в которой работа становится невозможной. В точке термодинамического равновесия энтропия максимальна. Поскольку об изменении систем в классической термодинамике мы можем судить по увеличению их энтропии, то энтропия и выступает в качестве своеобразной стрелы времени.
Отличие термодинамической модели от классической механики: необратимость времени.
Отличие от эволюционной теории Дарвина: эволюция – это естественный отбор и усложнение организации систем; термодинамическая же система движется к дезорганизации систем.
Первую попытку распространить законы термодинамики на Вселенную предпринял Р. Клаузиус, выдвинув два постулата:
1. Энергия Вселенной всегда постоянна.
2. Энтропия Вселенной всегда возрастает.
Все процессы во Вселенной направлены в сторону термодинамического равновесия – состояния, характеризующегося наибольшей степенью хаоса, беспорядка и дезорганизации. Во Вселенной должна наступить «тепловая смерть».
Живые организмы, являясь открытыми системами, постоянно обмениваются с окружающей средой веществом и энергией; получая энергию, организмы упорядочиваются, т.е. снижается энтропия. Но если рассматривать систему «организм – среда» в целом, энтропия постоянно растет.
Законы классической механики строго инвариантны, неизменны относительно изменения знака времени: замена «+t» на « -t» ничего в них не меняет. Поэтому и говорят, что механика обратима. Если мы абсолютно точно знаем начальные координаты и импульсы частиц, то можем узнать сколь угодно далекое прошлое и сколь угодно далекое будущее системы. Конечно, практически это осуществить невозможно, ни один компьютер не справится с такой задачей. Главное то, что мы можем это сделать теоретически. В мире ньютоновской механики все события раз и навсегда предопределены, это мир строгого детерминизма, в нем нет места случайностям.
А вот согласно второму началу термодинамики, в изолированной системе все процессы протекают только в одном направлении – к максимальной энтропии, возрастанию хаоса, что сопровождается рассеянием энергии. Проблема, которая потребовала своего решения, выглядела так: как можно вывести необратимость термодинамики из обратимости механики?
Эту проблему пытался решить во второй половине XIX века Л. Больцман. Он обратил внимание на то, что термодинамическая необратимость имеет смысл только для большого числа частиц: если частиц мало, то система оказывается фактически обратимой. Для того чтобы согласовать микроскопическую обратимость с макроскопической необратимостью, Больцман использовал вероятностное описание системы. Однако вскоре было показано, что уже само по себе вероятностное описание в неявном виде содержит представление о существовании "стрелы времени", и поэтому доказательство Больцмана нельзя считать корректным решением проблемы.
Сам Больцман пришел к выводу, что вся бесконечная Вселенная в целом обратима, а наш мир представляет собой по космическим меркам микроскопическую флуктуацию. А в середине XX века пулковский астроном Н.А. Козырев попытался создать необратимую механику, в которой "стрела времени" имеет характер физической реальности и служит источником энергии звезд. Но точка зрения Больцмана допускает возможность нарушения причинности в отдельных достаточно обширных областях Вселенной, а точка зрения Козырева вводит в описание природы некую особую физическую сущность, подобную «жизненной силе».
- Концепции современного естествознания Справочник для студентов
- Содержание
- Введение
- Тема 1. Естественнонаучная и гуманитарная культуры
- 1. Культура и наука. Критерии науки и ее социальные функции
- 2. Мир природы и мир человека: способы познания
- 3. Сциентизм и антисциентизм – мировоззренческие позиции хх века и их влияние на развитие культуры
- 4. Этика науки
- Тема 2. Предмет и метод естествознания
- 1. Предмет естествознания. Эволюция понятия природы
- 2. Научный метод. Классификация методов естественнонаучного познания
- 3. Формы научного знания
- 4. Принципы естествознания. Способы обоснования (модели) естественнонаучного знания
- Тема 3. Динамика естествознания и тенденции его развития
- 1. Возникновение естествознания. Проблема начала науки
- 2. Основные модели развития естественнонаучного знания
- 3. Научные революции и смена картин мира
- 4. Классическое, неклассическое и постнеклассическое естествознание
- Тема 4. История естествознания
- 1. Знание о природе в древних цивилизациях
- 2. Античная наука о природе
- 3. Эпоха Средневековья: религиозная картина мира и естественнонаучное познание
- 4. Эпоха Возрождения: революция в мировоззрении и науке. Предпосылки классической науки
- 5. Галилео Галилей и его роль в становлении классической науки
- 6. И. Ньютон и его роль в становлении классической науки
- 7. Научная революция XVI-XVII веков, ее ход, содержание и основные итоги
- 8. Естествознание в XVIII-XIX вв.
- 9. Физика на рубеже XIX-XX веков, ее открытия и достижения
- 10. Предпосылки и основное содержание новейшей революции в естествознании (XX в.) Становление современной науки
- Тема 5. Структурные уровни организации материи
- Современные взгляды на структурную организацию материи
- Тема 6. Макромир: вещество и поле. Принципы классической физики
- 1. Корпускулярная и континуальная концепции природы
- 2. Детерминизм. Динамические и статистические закономерности
- 3. Основные принципы термодинамики. Значение законов термодинамики в описании явлений природы
- 4. Основные понятия, законы и принципы классической физики
- Тема 7. Открытые системы и неклассическая термодинамика
- 1. Закрытые и открытые системы. Энтропия, порядок и хаос
- 2. Концепция «Тепловой смерти Вселенной»
- 3. Неравновесная термодинамика. Рождение синергетики
- Тема 9. Микромир. Квантовая физика
- 1. Открытие микромира. Принципы квантовой физики
- 2. Классификация элементарных частиц
- 3. Фундаментальные физические взаимодействия
- Тема 9. Мегамир. Современные астрофизические и космологические концепции
- 1. Основные космологические модели Вселенной
- 2. Эволюция Вселенной. Теория «Большого взрыва»
- 3. Антропный принцип
- 4. Строение и эволюция галактик
- 5. Строение и эволюция звезд
- 6. Происхождение и строение Солнечной системы
- Тема 10. Пространство и время в современной научной картине мира
- 1. Развитие представлений о пространстве и времени в истории науки Классическая концепция пространства и времени
- 3. Формы пространства и времени
- Тема 11. Основные концепции химии
- 1. Химия как наука, ее предмет и проблемы
- 2. Основные этапы (концепции) развития химии
- 3. Химические системы и процессы
- 4. Реакционная способность веществ
- 5. Проблемы самоорганизации в современной химии
- Тема 12. Проблемы и перспективы современной геологии
- 1. Основные этапы развития наук о Земле
- 2. История геологического развития Земли
- 3. Внутреннее строение Земли
- Тема 13. Особенности биологического уровня организации материи
- 1. Биология как система наук о живой природе
- 2. Основные концепции происхождения жизни. Сущность живого
- 3. Уровни организации живой материи и ее свойства
- 4. Клеточная теория. Единство органического мира
- Тема 14. Генетика и эволюция
- 1. Концепции эволюционизма в биологии
- 2. Эволюция как основа многообразия и единства живых организмов Микроэволюция и макроэволюция
- 3. Принципы воспроизводства и развития живых систем Онтогенез и филогенез
- Тема 15. Человек как предмет естествознания
- 1. Естественнонаучная концепция антропогенеза
- 2. Физиология человека. Здоровье и работоспособность человека
- 3. Высшие психические функции и их физиологические механизмы. Сознание и мозг
- 4. Этология. Особенности поведения человека и животных
- Тема 17. Эмоции и творчество. Жизнь как ценность
- 1. Эмоции и их роль в жизни человека
- 2. Воображение и творчество. Поиски алгоритма творчества
- 3. Жизнь как ценность. Биоэтика
- Тема 17. Человек и биосфера
- 1. Эволюция представлений о биосфере Концепция Вернадского о биосфере
- 2. Ноосфера. Единство человека и природы. Русский космизм
- 3. Космические циклы и человек
- Тема 18. Принцип глобального эволюционизма и его роль в современной науке
- 1. Глобальный эволюционизм
- 2. Самоорганизация как основа эволюции