5.8. Синтез веществ
Селективный органический синтез. Важнейшая задача химика-синтетика – добиться селективности в органическом синтезе, т.е. научиться осуществлять строго определенное структурное изменение в молекуле, превращая ее в конечный продукт заданного строения. Для решения такой довольно трудной задачи нужно изучить реакционную способность реагентов для каждого типа связи – хемоселективность, создать при взаимодействии реагентов их правильную ориентацию – региоселективность и заданную периодическую пространственную конфигурацию – стереоселективность. Например, синтез адамантана С10Н14 дает представление о том, как можно контролировать все данные факторы. С10Н14 – уникальная молекула, представляющая собой фрагмент структуры алмаза, содержащей 10 углеродных атомов. Впервые адамантан удалось получить путем трудоемкого многостадийного синтеза с выходом только 2,4%. Благодаря последним экспериментальным исследованиям адамантан синтезируется в одну стадию и с выходом 75%. Выяснилось, что адамантадин–адамантан, в молекулу которого введена всего лишь одна аминогруппа, обладает антивирусным свойством, и его можно применять как средство против гриппа и против болезни Паркинсона.
Широкое распространение получила реакция циклоприсоединения с образованием пятичленных циклов, применяющихся для синтеза самых разных соединений – от новых электропроводящих материалов до лекарственных препаратов, например, антибиотиков и противоопухолевых средств. Так, замыкание цикла на радиевом катализаторе является ключевой стадией в синтезе тиенамицина, в котором пятичленный цикл содержит атом азота. Конечный продукт оказался эффективным, подобным пенициллину, средством против инфекционных болезней.
Фотохимический синтез. Фотохимический синтез основан на действии излучения. После поглощения энергии молекула переходит в возбужденное энергетическое состояние. Химические свойства молекулы существенно зависят от свойств поглощенного света, при котором константа диссоциации кислот изменяется на 5–10%, окислительные и восстановительные процессы кардинально изменяются и даже химически инертные вещества могут стать реакционноспособными.
В результате фотохимического синтеза получены многие биологически активные соединения, например, алкалоид атизин, несколько антибиотиков, провитамин D3 и др. Активность фотохимического синтеза в значительной степени зависит от длины волны возбуждающего света и температуры. Так, при уменьшении длины волны всего лишь на 1% – с 302,5 до 300,0 нм – выход провитамина D3 увеличивается вдвое, а при снижении температуры синтеза – вчетверо.
Биосинтез. Среди природных веществ есть регуляторы роста растений и насекомых, органические соединения, используемые насекомыми в качестве средств коммуникации, пестициды, антибиотики, витамины и многие целебные вещества. Природное соединение сначала необходимо обнаружить, затем выделить его химическим путем, потом определить его структуру и свойства и, наконец, произвести заданный синтез.
Часто химики стремятся получить только одну нужную форму из двух, являющихся зеркальным отражением друг друга. Каждый атом углерода, с которым связаны различные группы атомов, порождает пару симметричных зеркальных структур и называется хиральным атомом или хиральным центром. Характерный пример выделения только одной зеркальной формы – синтез антибиотиков. В природе встречается около 50 соединений подобного типа, среди них самое известное – монензин, продуцируемый штаммом бактерий. Антибиотики такого типа (монензин, лазалоцид, салиномицин) широко применяются для борьбы с инфекционными заболеваниями в бройлерном производстве. В США ежегодно продают примерно на 50 млн долларов монензина. Монензин содержит 26 атомов углерода, 17 хиральных центров – это означает возможность существования 217 различных стереоизомеров. Поэтому для осуществления синтеза монензина необходимы высокостереоселективные реакции. Производство монензина и его структурных аналогов – крупное достижение современного биосинтеза.
При исследовании строения биополимеров – гигантских молекул белков (нуклеиновых кислот, синтезируемых живыми организмами), возникают те же проблемы, что и при изучении природных соединений с меньшей молекулярной массой. Белки выполняют различные биологические функции: участие в пищеварении, транспорт кислорода в крови, сокращение мышечных волокон, защита от вирусов и бактерий с помощью антител и т.п. Сложная пространственная форма белков во многом определяет их биологические функции. Так, молекула коллагена – белка, придающего прочность коже и костям, имеет форму стержня. Антитела представляют собой молекулы с выемками У-образной формы, которые заполняются молекулами чужеродных веществ и служат для запуска реакций, обеспечивающих их эффективное обезвреживание.
Белки – высокодинамические системы, которые при осуществлении биологических функций способны менять форму. Например, свет вызывает изменение формы родопсина – белка сетчатки глаза, что и является первичной стадией зрительного восприятия. Такое изменение происходит в течение менее одной миллиардной доли секунды. Подобные процессы в молекулах белков обнаруживаются с помощью импульсных лазеров.
Для белков характерны повторяющиеся структурные фрагменты и общность механизмов действия. Даже простейшие клетки содержат более 5000 различных видов белков. Последние имеют общие структурные особенности. Например, наблюдается сходство между ферментом тромбином, вызывающем свертывание крови, и пищеварительным ферментом – химотрипсином. Многие белки разных организмов похожи друг на друга. Так, гемоглобин мыши мало отличается от гемоглобина человека. В сложных организмах ферменты работают так же, как и в простых.
- Современного
- Естествознания
- Курс лекций
- Логика познания и методология естественных наук
- 1.1. Всеобщий характер законов природы
- 1.2. Понятия метода и методологии. Классификация методов научного познания
- 1.3. Общенаучные методы эмпирического познания. Наблюдение и эксперимент
- 1.4. Общенаучные методы теоретического познания. Абстрагирование и идеализация. Мысленный эксперимент
- 1.5. Формализация как метод теоретического познания. Язык науки
- 1.6. Индукция и дедукция как формально-логические методы познания. Основные методы индукции
- Естествознание эпохи античности. Натурфилософия и ее место в истории естествознания. Возникновение античной науки
- 2.1. Естествознание эпохи Средневековья
- 2.2. Научные революции в истории естествознания. Естествознание эпохи Возрождения. Первая научная революция. Учение о множественности миров
- 2.3. Естествознание Нового времени. Научная революция XVII века. Создание классической механики и экспериментального естествознания
- 2.4. Естествознание Нового времени и проблема философского метода
- 2.5. Научная революция второй половины XVIII–XIX веков. Диалектизация естествознания
- 2.6. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- 2.7. Естественнонаучная революция первых десятилетий XX века. Проникновение вглубь материи. Теория относительности и квантовая механика. Крушение механистической картины мира
- 2.8. Научно-техническая революция, ее исторические этапы и естественнонаучная составляющая
- Понятия пространства, времени и материи. Фундаментальные взаимодействия
- 3.1. Гравитационное взаимодействие
- 3.2. Понятие о квантовой гравитации
- 3.3. Слабое взаимодействие
- 3.4. Электромагнитное взаимодействие
- 3.5. Сильное взаимодействие
- 3.6. Тенденции объединения взаимодействий
- 3.7. Концепции материи, движения, пространства и времени
- Фундаментальные принципы и законы
- 4.1. Свойства пространства-времени и законы сохранения
- 4.2. Классическая концепция Ньютона
- 4.3. Статистические и термодинамические свойства макросистем
- 4.4. Электромагнитная концепция
- 4.5. Концепции дальнодействия и близкодействия
- 4.6. Дискретность и непрерывность материи
- 4.7. Сущность электромагнитной теории Максвелла
- 4.8. Корпускулярно-волновые свойства света
- 4.9. Основные концепции описания микромира
- 4.10. Постулаты Бора
- 4.11. Нуклонный уровень организации материи
- 4.12. Дефект массы и энергия связи
- 4.13. Релятивистская квантовая физика. Античастицы и виртуальные частицы
- 4.14. Физический вакуум в квантовой теории поля
- Место и роль химии в современной цивилизации
- 5.1. Фундаментальные основы современной химии
- 5.2. Особенность и двуединая задача современной химии
- Концептуальные уровни современной химии
- 5.3. Понятия «химический элемент» и «химическое соединение» с точки зрения современности
- 5.4. Учение о химических процессах
- 5.5. Эволюционная концепция в химии
- 5.6. Сущность химической эволюции
- 5.7. Превращение органических и неорганических соединений
- 5.8. Синтез веществ
- 5.9. Современный катализ
- Природные процессы образования земных и внеземных веществ. Природные запасы сырья и превращение энергии
- 6.1. Природные запасы сырья и превращение энергии
- Металлы
- 6.2. Неметаллическое сырье
- Углерод
- 6.3. Вторичное сырье
- 6.4. Химические процессы и энергетика
- 6.5. Природные энергоресурсы
- 6.6. Источники электрической и тепловой энергии
- 6.7. Эффективность энергосистем
- 6.8. Радиоактивные изотопы
- 6.9. Плазмохимические процессы
- Особенности биологического уровня организации материи
- 7.1. Важнейшие открытия второй половины XIX века, которые легли в основу современной биологии
- 7.2. Многогранность живого
- 7.3. Триединство концептуальных уровней познания в современной биологии
- 7.4. Структурные уровни организации живых систем
- 7.5. Развитие современной концепции биохимического единства всего живого
- 7.6. За счет чего функционирует энергетика живого?
- 7.7. Особенности термодинамики, самоорганизации и информационного обмена в живых системах
- 7.8. Роль генетического материала в воспроизводстве и эволюции живых организмов
- Биологическая эволюция
- 8.1. Какие научные факты обосновывают эволюционность живого?
- 8.2. Исторически сформированные концепции происхождения жизни
- 8.3. Особенности условий на ранней Земле
- 8.4. Принципы биологической эволюции
- Происхождение человека
- 9.1. Сущность современной эволюционной теории происхождения человека от животного предка
- 9.2. Роль естественного отбора и социальных факторов в эволюции человека как комплексном процессе антропосоциогенеза
- 9.3. Как современная наука определяет природу и сущность человека?
- 9.4. Что свидетельствует о сложности и многомерности внутреннего мира человека?
- 9.5. Какие факторы определяют природу человеческого сознания?
- 9.6. Как трактуется психика и сознание теорией отражения?
- 9.7. Чем характеризуются эмоции, чувства, интеллект с позиций гносеологии?
- 9.8. Суть феноменов человеческого воображения и памяти
- 9.9. Возможности психического управления телесными, соматическими процессами
- Биоэтика и поведение человека
- 10.1. Истоки человеческой морали и этики
- 10.2. Сравнительный анализ социальных структур и социального поведения животных и человека
- 10.3. Чем определяются мотивации человеческого поведения?
- 10.4. Проблема смысла и цели человеческого бытия
- 10.5. Гуманистические позиции биоэтики
- 10.6. Какие факторы приводят к потере здоровья отдельного человека и популяции?
- 10.7. Различие между валеологическими и медико-биологическими подходами к оздоровлению
- 10.8. Что дают современные мировоззренческие знания для понимания природы здоровья?
- Человек и биосфера
- 11.1. Основа организации и устойчивости биосферы
- 11.2. Эволюция биосферы
- 11.3. Суть и главная задача экологии
- 11.4. Основы целостного учения в.И. Вернадского о биосфере
- 11.5. Новое состояние биосферы в результате взаимодействия человека и природы
- Эволюционно-синергетическая парадигма
- 12.1. Принципы синергетики
- 12.2. Сущность гуманитарного аспекта синергетики
- Словарь терминов по курсу
- Основная литература
- Дополнительная литература
- Учебное издание основы современного естествознания Курс лекций
- 210038, Г. Витебск, Московский проспект, 33. Основысовременногоестествознания Витебск 2007