logo
лекции шилина

1.6. Индукция и дедукция как формально-логические методы познания. Основные методы индукции

Индукция (от лат. inductio – наведение, побуждение) есть метод познания, основывающийся на формальнологическом умозаключении, которое приводит к получению общего вывода на основании частных посылок. Другими словами, это есть движение нашего мышления от частного, единичного к общему.

Индукция широко применяется в научном познании. Обнаруживая сходные признаки, свойства у многих объектов определенного класса, исследователь делает вывод о присущности этих признаков, свойств всем объектам данного класса. Например, в процессе экспериментального изучения электрических явлений использовались проводники тока, выполненные из различных металлов. На основании многочисленных единичных опытов сформировался общий вывод об электропроводности всех металлов.

Индукция, используемая в научном познании (научная индукция), может реализовываться в виде следующих методов:

1. Метод единственного сходства (во всех случаях наблюдения какого-то явления обнаруживается лишь один общий фактор, все другие – различны; следовательно, этот единственный сходный фактор есть причина данного явления).

2. Метод единственного различия (если обстоятельства возникновения какого-то явления и обстоятельства, при которых оно не возникает, почти во всем сходны и различаются лишь одним фактором, присутствующим только в первом случае, то можно сделать вывод, что этот фактор и есть причина данного явления).

3. Соединенный метод сходства и различия (представляет собой комбинацию двух вышеуказанных методов).

4. Метод сопутствующих изменений (если определенные изменения одного явления всякий раз влекут за собой некоторые изменения в другом явлении, то отсюда вытекает вывод о причинной связи этих явлений).

5. Метод остатков (если сложное явление вызывается многофакторной причиной, причем некоторые из этих факторов известны как причина какой-то части данного явления, то отсюда следует вывод: причина другой части явления – остальные факторы, входящие в общую причину этого явления).

Родоначальником классического индуктивного метода познания является Ф. Бэкон. Но он трактовал индукцию чрезвычайно широко, считал ее важнейшим методом открытия новых истин в науке, главным средством научного познания природы (всеиндуктивизм). Однако индукцию нельзя рассматривать изолированно от других методов познания, в частности, от дедукции.

Дедукция (от лат. deductio – выведение) есть получение частных выводов на основе знания каких-то общих положений. Другими словами, это есть движение нашего мышления от общего к частному, единичному. Например, из общего положения, что все металлы обладают электропроводностью, можно сделать дедуктивное умозаключение об электропроводности конкретной медной проволоки (зная, что медь – металл). Если исходные общие положения являются установленной научной истиной, то методом дедукции всегда будет получен истинный вывод. Общие принципы и законы не дают ученым в процессе дедуктивного исследования сбиться с пути: они помогают правильно понять конкретные явления действительности.

Получение новых знаний посредством дедукции существует во всех естественных науках, но особенно большое значение дедуктивный метод имеет в математике. Оперируя математическими абстракциями и строя свои рассуждения на весьма общих положениях, математики вынуждены чаще всего пользоваться дедукцией. И математика является, пожалуй, единственной собственно дедуктивной наукой.

В науке Нового времени пропагандистом дедуктивного метода познания был видный математик и философ Р. Декарт. Вдохновленный своими математическими успехами, будучи убежденным в безошибочности правильно рассуждающего ума, Декарт односторонне преувеличивал значение интеллектуальной стороны за счет опытной в процессе познания истины. Дедуктивная методология Декарта была прямой противоположностью эмпирическому индуктивизму Бэкона.

Но, несмотря на имевшие место в истории науки и философии попытки оторвать индукцию от дедукции, противопоставить их в реальном процессе научного познания, эти два метода не применяются как изолированные, обособленные друг от друга. Каждый из них используется на соответствующем этапе познавательного процесса.

Более того, в процессе использования индуктивного метода зачастую «в скрытом виде» присутствует и дедукция. Подчеркивая необходимую связь индукции и дедукции, Ф. Энгельс настоятельно советовал ученым: «Вместо того чтобы односторонне превозносить одну из них до небес за счет другой, надо стараться каждую применять на своем месте, а этого можно добиться лишь в том случае, если не упускать из виду их связь между собой, их взаимное дополнение друг другом».

Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания. Анализ и синтез. Под анализом понимают разделение объекта (мысленно или реально) на составные частицы с целью их отдельного изучения. В качестве таких частей могут быть использованы какие-то вещественные элементы объекта или же его свойства, признаки, отношения и т.п.

Анализ – необходимый этап в познании объекта. С древнейших времен анализ применялся, например, для разложения на составляющие некоторых веществ. В частности, уже в Древнем Риме анализ использовался для проверки качества золота и серебра в виде так называемого купелирования (анализируемое вещество взвешивалось до и после нагрева). Постепенно формировалась аналитическая химия, которую по праву можно называть матерью современной химии: ведь прежде чем применять то или иное вещество в конкретных целях, необходимо выяснить его химический состав.

Анализ занимает важное место в изучении объектов материального мира. Но он составляет лишь первый этап процесса познания. Если бы, скажем, химики ограничивались только анализом, т.е. выделением и изучением отдельных химических элементов, то они не смогли бы познать все те сложные вещества, в состав которых входят эти элементы.

Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в совокупности, в единстве. Осуществить этот второй этап в процессе познания – перейти от изучения отдельных составных частей объекта к изучению его как единого связанного целого – возможно только в том случае, если метод анализа дополняется другим методом синтезом. В процессе синтеза производится соединение воедино составных частей (сторон, свойств, признаков и т.п.) изучаемого объекта, расчлененных в результате анализа. На этой основе происходит дальнейшее изучение объекта, но уже как единого целого. При этом синтез не означает простого механического соединения разъединенных элементов в единую систему. Он раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь и взаимообусловленность, т.е. позволяет понять подлинное диалектическое единство изучаемого объекта.

Анализ и синтез с успехом используются и в сфере мыслительной деятельности человека, т.е. в теоретическом познании. Но и здесь, как и на эмпирическом уровне познания, анализ и синтез – это не две оторванные друг от друга операции. По своему существу они – как бы две стороны единого аналитико-синтетического метода познания.

Аналогия и моделирование – общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания. Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.

Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключением по аналогии. Ход такого умозаключения можно представить следующим образом. Пусть имеется, например, два объекта: А и В. Известно, что объекту А присущи свойства Р1, Р2, ..., Рn, Рn+1. Изучение объекта В показало, что ему присущи свойства Р1, Р2, ..., Рn, совпадающие соответственно со свойствами объекта А. На основании сходства ряда свойств (Р1, Р2, ..., Рn) у обоих объектов может быть сделано предположение о наличии свойства Рn+1 у объекта В.

Степень вероятности получения правильного умозаключения по аналогии будет тем выше: 1) чем больше известно общих свойств у сравниваемых объектов; 2) чем существеннее обнаруженные у них общие свойства и 3) чем глубже познана взаимная закономерная связь этих сходных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.

Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда – прототипом, образцом и т.д.). Таким образом, модель всегда выступает как аналогия, т.е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).

Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект – оригинал.

В зависимости от характера используемых в научном исследовании моделей различают несколько видов моделирования.

1. Мысленное (идеальное) моделирование. К этому виду моделирования относятся самые различные мысленные представления в форме тех или иных воображаемых моделей. Например, в идеальной модели электромагнитного поля Дж. Максвелла силовые линии представлялись в виде трубок, по которым течет воображаемая жидкость, не обладающая инерцией и сжимаемостью.

2. Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. В настоящее время физическое моделирование широко используется для разработки и экспериментального изучения различных сооружений (плотин электростанций, оросительных систем и т.п.), машин (аэродинамические качества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической трубе), для лучшего понимания каких-то природных явлений и т.д.

3. Символическое (знаковое) моделирование. Оно связано с условно-знаковым представлением каких-то свойств, отношений объекта-оригинала. Особой и очень важной разновидностью символического (знакового) моделирования является математическое моделирование. Взаимосвязи между различными величинами, описывающими функционирование исследуемого объекта или явления, могут быть представлены соответствующими уравнениями. Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения (начальные условия, граничные условия, значения коэффициентов уравнений и т.п.), называется математической моделью явления.

4. Математическое моделирование может применяться в особом сочетании с физическим моделированием. Такое сочетание, именуемое вещественно-математическим (или предметно-математическим) моделированием, позволяет исследовать какие-то процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы (которые, однако, описываются теми же математическими соотношениями, что и исходные процессы). Так, механические колебания могут моделироваться электрическими колебаниями на основе полной идентичности описывающих их дифференциальных уравнений.

5. Численное моделирование на компьютере. Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объёмов вычислений, необходимых для исследования данной модели.

ЛЕКЦИЯ 2