7.2. Иммобилизованные ферменты
Одна из задач инженерной энзимологии состоит в разработке технологии получения и использования иммобилизованных ферментов. Иммобилизованными ферментами называются ферменты, искусственно связанные с нерастворимым носителем, но сохраняющие свои каталитические свойства. Начало этому направлению биотехнологии было положено в 1916 году, когда Дж.Нельсон и Е.Гриффин адсорбировали на угле инвертазу и показали, что она сохраняет в таком виде каталитическую активность.
В настоящее время в понятие «иммобилизация» вкладывают более широкий смысл – полное или частичное ограничение свободы движения белковых молекул.
Иммобилизованные ферменты имеют ряд преимуществ в сравнении со свободными молекулами:
представляют собой гетерогенные катализаторы, легко отделяемые от реакционной среды, что дает возможность остановить реакцию в любой момент, использовать фермент повторно, а также получать чистый от фермента продукт;
могут использоваться многократно и обеспечивают непрерывность каталитического процесса;
изменяют свои свойства: субстратную специфичность, устойчивость, зависимость активности от параметров среды;
долговечны в тысячи и десятки тысяч раз стабильнее свободных энзимов.
Все перечисленное обеспечивает высокую экономичность, эффективность и конкурентоспособность технологий, использующих иммобилизованные ферменты.
Иммобилизовать ферменты можно как путем связывания на нерастворимых носителях, так и путем внутримолекулярной или межмолекулярной сшивки белковых молекул низкомолекулярными бифункциональными соединениями, а также путем присоединения к растворимому полимеру.
Носители для иммобилизации ферментов. К носителям предъявляются следующие требования:
высокая химическая и биологическая стойкость;
высокая химическая прочность;
достаточная проницаемость для фермента и субстратов, пористость, большая удельная поверхность;
возможность получения в виде удобных в технологическом отношении форм (гранул, мембран);
легкая активация;
высокая гидрофильность;
невысокая стоимость.
Для получения иммобилизованных ферментов используется ограниченное число как органических, так и неорганических носителей (рис. 7.1).
Н ОСИТЕЛИ | |||
О РГАНИЧЕСКИЕ | Н ЕОРГАНИЧЕСКИЕ | ||
НИЗКОМОЛЕКУЛЯРНЫЕ | ПОЛИМЕРНЫЕ | МАКРОПОРИСТЫЕ | ДРУГИЕ |
Рис. 7.1. Классификация носителей для иммобилизованных ферментов
Органические полимерные носители. Существующие органические полимерные носители можно разделить на два класса: природные (белковые, полисахаридные и липидные) и синтетические полимерные носители (полиметиленовые, полиамидные и полиэфирные).
Преимущества природных носителей: доступность, полифункциональность и гидрофильность; недостатки: биодеградируемость и высокую стоимость.
Из полисахаридов для иммобилизации наиболее часто используют целлюлозу, декстран, агарозу и их производные. Для придания химической устойчивости линейные цепи целлюлозы и декстрана поперечно сшивают эпихлоргидрином. В полученные сетчатые структуры вводят различные ионогенные группировки. Химической модификацией крахмала сшивающими агентами (формальдегид, глиоксаль, глутаровый альдегид) синтезирован новый носитель – губчатый крахмал, обладающий повышенной устойчивостью к гликозидазам.
Из природных аминосахаридов в качестве носителей применяют хитин. Хитин химически стоек и имеет хорошо выраженную пористую структуру.
Среди белков в качестве носителей применяют структурные протеины, – кератин, фиброин, коллаген и желатина (продукт переработки коллагена). Белки способны к биодеградации, что очень важно при конструировании иммобилизованных ферментов для медицинских целей. К недостаткам белков как носителей в этом случае следует отнести их высокую иммуногенность.
Синтетические полимерные носители. Большинство синтетических полимерных носителей обладают механической прочностью, и возможностью варьирования в широких пределах величины пор. Некоторые синтетические полимеры могут быть произведены в различных физических формах (трубы, волокна, гранулы). К ним относятся полимеры на основе стирола, акриловой кислоты, поливинилового спирта; полиамидные и полиуретановые полимеры.
Носители неорганической природы. В качестве носителей наиболее часто применяют материалы из стекла, глины, керамики, графитовой сажи, силикагеля, а также силохромы, оксиды металлов. Их можно подвергать химической модификации, для чего носители покрывают пленкой оксидов алюминия, титана, циркония или обрабатывают органическими полимерами. Основное преимущество неорганических носителей – легкость регенерации. Подобно синтетическим полимерам неорганическим носителям можно придать любую форму и получать их с любой степенью пористости.
Методы иммобилизации ферментов
Существуют два принципиально различных метода иммобилизации ферментов: физические (без возникновения ковалентных связей между ферментом и носителем) и химические (с образованием ковалентной связи между ними) (рис. 7.2).
| ||||
а | б | в | г | д |
Рис 7.2. Методы иммобилизации ферментов Физические методы иммобилизации: а – адсорбция; б – включение в гель; в – инкапсулирование; г – включение в липосомы; Химические методы иммобилизации: д – ковалентные связывание |
Физические методы иммобилазации представляет собой включение фермента в такую среду, в которой для него доступной является лишь ограниченная часть общего объема. При физической иммобилизации фермент не связан с носителем ковалентными связями. Существует четыре типа связывания ферментов.
Адсорбция ферментов на нерастворимых носителях. Адсорбция была первым методом иммобилизации ферментов и стала наиболее широко распространенным способом получения иммобилизованных ферментов в промышленности. В качестве адсорбентов используют кремнезем, активированный уголь, графитовая сажа, различные глины, пористое стекло, полисахариды, синтетические полимеры, оксиды алюминия, титана и других металлов. При адсорбционной иммобилизации белковая молекула удерживается на поверхности носителя за счет электростатических, гидрофобных, дисперсионных взаимодействий и водородных связей. Эффективность адсорбции определяется удельной поверхностью (плотностью центров сорбции) и пористостью носителя.
Процесс адсорбции ферментов на нерастворимых носителях отличается простотой и достигается при контакте водного раствора фермента с носителем (статистическим способом, при перемешивании, динамическим способом с использованием колонок). С этой целью раствор фермента смешивают со свежим осадком, например, гидроксида титана, и высушивают в мягких условиях. Активность фермента при таком варианте иммобилизации сохраняется практически на 100 %, а удельная концентрация белка достигает 64 мг на 1 г носителя.
К недостаткам адсорбционного метода относится невысокая прочность связывания фермента с носителем (при изменении условий иммобилизации могут происходить десорбция фермента, его потеря и загрязнение продуктов реакции). Прочность связывания фермента с носителем может повысить предварительная модификация носителя (обработка ионами металлов, полифункциональными агентами – полимерами, белками, гидрофобными соединениями, монослоем липида и пр.). Иногда, модификации подвергается молекула исходного фермента, однако зачастую это ведет к снижению его активности.
Иммобилизация ферментов путем включения в гель. Способ иммобилизации ферментов путем включения в трехмерную структуру полимерного геля широко распространен благодаря своей простоте и уникальности. Метод применим для иммобилизации не только индивидуальных ферментов, но и мулътиэнзимных комплексов и даже интактных клеток. Иммобилизацию ферментов в геле осуществляют двумя способами:
фермент вводят в водный раствор мономера, а затем проводят полимеризацию, в результате которой возникает пространственная структура полимерного геля с включенными в его ячейки молекулами фермента; используют гели полиакриламида, поливинилового спирта, поливинилпирролидона, силикагеля;
фермент вносят в раствор уже готового полимера, который впоследствии переводят в гелеобразное состояние; используют гели крахмала, агар-агара, каррагинана, агарозы, фосфата кальция.
К преимуществам иммобилизация ферментов в гелях относят:
равномерное распределение энзима в объеме носителя;
высокая механическая, химическая, тепловая и биологическая стойкость матрицы;
возможность многократного использования фермента, включенного в его структуру.
Однако метод непригоден для иммобилизации ферментов, действующих на водонерастворимые субстраты.
Иммобилизация ферментов в полупроницаемые структуры. Сущность этого способа иммобилизации – отделении водного раствора фермента от водного раствора субстрата с помощью полупроницаемой мембраны, пропускающей низкомолекулярные молекулы субстратов и кофакторов, но задерживающей большие молекулы фермента.
Наибольшее распространение получили две модификации этого метода – микрокапсулирование и включение ферментов в липосомы.
Микрокапсулирование состоит в том, что водный раствор фермента включается внутрь замкнутой микрокапсулы, стенки которой образованы полупроницаемым полимером.
Размер получаемых капсул составляет десятки или сотни микрометров, а толщина мембраны – сотые доли микрометра.
Достоинства метода микрокапсулирования:
простота;
универсальность;
возможность многократного использования нативного фермента (фермент может быть отделен от непрореагировавшего субстрата и продуктов реакции процедурой простого фильтрования);
возможность иммобилизовать не только индивидуальные ферменты, но и мультиэнзимные комплексы, целые клетки и отдельные фрагменты клеток.
К недостаткам метода следует отнести невозможность инкапсулированных ферментов осуществлять превращения высокомолекулярных субстратов.
Включение водных растворов ферментов в липосомы. Для получения липосом из растворов липида (чаще всего лецитина) упаривают органический растворитель. Оставшуюся тонкую пленку липидов диспергируют в водном растворе, содержащем фермент. В процессе диспергирования происходит самосборка бислойных липидных структур липосомы, содержащих включенный раствор фермента.
Ферменты, иммобилизованные путем включения в структуру липосом, используют преимущественно в медицинских и научных целях. Изучение липосом имеет большое значение для понимания закономерностей процессов жизнедеятельности клетки, поскольку значительная часть ферментов в клетке локализована в составе липидного матрикса биологических мембран.
Химические методы иммобилизации ферментов. Иммобилизация ферментов путем образования новых ковалентных связей между ферментом и носителем – наиболее массовый способ облучения промышленных биокатализаторов.
В отличие от физических методов этот способ иммобилизации обеспечивает прочную и необратимую связь фермента с носителем и часто сопровождается стабилизацией молекулы энзима. Однако расположение фермента относительно носителя на расстоянии одной ковалентной связи создает трудности в осуществлении каталитического процесса. Фермент отделяют от носителя с помощью вставки (сшивка, спейсер), в роли которой чаще всего выступают бифункциональные и полифункциональные агенты (бромциан, гидразин, сульфурилхлорид, глутаровый диальдегид и др.).
Принципиально важно, чтобы в иммобилизации фермента участвовали функциональные группы, не существенные для его каталитической функции. Так, гликопротеины обычно присоединяют к носителю через углеводную, а не через белковую часть молекулы фермента.
Все методы химической иммобилизации классифицируют в зависимости от природы реакционной группы носителя, вступающей во взаимодействие с молекулой фермента.
Иммобилизация ферментов на носителях, обладающих гидроксогруппами. Наиболее распространенным методом образования ковалентной связи между ферментом и полисахаридным носителем или синтетическим диольным соединением является бромциановый метод. При обработке носителя бромцианом возникают реакционноспособные цианаты и имидокарбонаты, которые при взаимодействии с нуклеофильными аминогруппами фермента образуют производные изомочевины и уретанов:
Иммобилизация ферментов на носителях, обладающих аминогруппами. Первичные аминогруппы носителя, связанные с ароматическим кольцом, предварительно превращают в соли диазония, которые затем подвергают разнообразным реакциям сочетания. В реакции сочетания вступают фенольные, имидазольные, аминные, гуанидиновые, тиольньте группы белков.
Иммобилизация на носителях, обладающих активированными производными карбоксильной группы. Наиболее часто для соединения аминогрупп белка с ацильными группировками носителя используют ангидриды, галогенангидриды, активированные эфиры и другие производные карбоновых кислот.
Иммобилизация на носителях, обладающих сульфгидрильными группами. Сульфгидрильные группы носителя и фермента легко окисляются с образованием дисульфидных связей под действием кислорода воздух:
Н—SН +НS—Ф + О2→Н— S—S —Ф + Н2О
Преимущества химической иммобилизации – высокая эффективность и прочность связи. Однако, методы ковалентной иммобилизации малодоступны для промышленного использования в связи со сложностью и дороговизной их применения.
- 020209.65 «Микробиология»
- Глава 1. Характеристика микроорганизмов - объектов биотехнологических производств
- 1.1. Строение прокариотической (бактериальной) клетки
- 1.2. Размножение бактерий
- 1.3. Строение эукариотической клетки
- 1.4. Характеристика наиболее важных представителей различных классов грибов, их размножение
- 1.5. Дрожжи. Их формы, размеры. Размножение дрожжей. Принципы классификации дрожжей
- Глава 2. Метаболизм. Принципы регуляции обмена веществ микрорганизмов
- Глава 3. Генетика микроорганизмов. Пути совершенствования микробиологических производств методами генной инженерии
- 3.1. Генотип и фенотип микроорганизмов
- 3.2. Формы изменчивости микроорганизмов
- 3.3. Типы мутантных штаммов продуцентов
- 3.4. Способы получения мутантных штаммов микроорганизмов
- 3.4.1. Селекционные методы получения мутантов
- 3.4.2. Генетическая модификация микроорганизмов
- 3.4.3. Методы генной инженерии
- 3.4.4. Конструирование рекомбинантной днк
- 3.4.4.1. Встраивание днк в вектор
- 3.4.4.2. Генетическая трансформация клеток бактерий
- 3.4.4.3. Экспрессия чужеродных генов в клетках бактерий
- Глава 4. Культивирование микроорганизмов
- 4.1. Рост и развитие микроорганизмов
- 4.2. Оптимальные условия культивирования
- 4.3. Промышленные способы культивирования микроорганизмов
- Глава 5. Общие принципы биотехнологических производств
- 5.1. Основная схема технологического процесса
- Х ранение
- 5.2. Этапы технологического процесса
- 5.2.1. Приготовление питательной среды
- 5.2.2. Подготовка посевного материала
- 5.2.3. Ферментация (культивирование)
- 5.2.4. Выделение целевого продукта
- 5.2.5. Очистка целевого продукта
- Глава 6. Производство микробной биомассы
- 6.1. Получение и использование биомассы одноклеточных
- 6.1.1. Получение дрожжевого белка
- 6.1.2. Получение бактериальной биомассы
- 6.1.3. Получение грибного белка (микопротеина)
- Получение водорослевого белка
- 6.2. Получение энзиматически активной биомассы
- 6.2.1. Получение хлебопекарских дрожжей
- 6.2.2. Получение заквасок молочной промышленности
- 6.2.3. Получение бактериальных удобрений
- 6.3. Получение и использование микробных инсектицидов
- 6.3.1. Получение бактериальных энтомопатогенных препаратов
- 6.3.2. Получение грибных энтомопатогенных препаратов
- 6.3.3. Получение вирусных энтомопатогенных препаратов
- 6.4. Получение и использование вакцин
- Глава 7. Производство ферментных препаратов
- 7.1. Технология получения ферментов микроорганизмов
- 7.2. Иммобилизованные ферменты
- 7.3. Иммобилизация клеток
- 7.4. Промышленные процессы с использованием иммобилизованных ферментов и клеток
- Глава 8. Получение продуктов микробиального синтеза
- 8.1. Биотехнология получения первичных метаболитов
- 8.1.1. Производство аминокислот
- 8.1.2. Производство витаминов
- 8.1.3. Производство органических кислот
- 8.2. Биотехнология получения вторичных метаболитов
- 8.2.1. Получение антибиотиков
- 8.3. Биотехнология получения метаболитов, с использованием генномодифицированных микроорганизмов
- Глава 9. Использование микроорганизмов в пищевой промышленности
- 9.1. Производства, основанные на спиртовом брожении
- 9.1.1. Хлебопекарное производство
- 9.1.2. Производство пищевого спирта
- 9.1.3. Производство пива
- 9.1.4. Производство вина
- 9.2. Производства, основанные на молочнокислом брожении
- 9.2.1. Производство кисломолочных продуктов
- 9.2.2. Производство сыров
- Глава 10. Использование микроорганизмов в охране окружающей среды
- 10.1. Биологическая обработка органических отходов
- 10.1.1. Биологическая очистка сточных вод
- 10.1.2. Биологическая обработка твердых отходов
- 10.2. Биоремедиация загрязненных почв и грунтов
- Глава 11. Использование микроорганизмов в технологии металлов