Лекция: Энергетический обмен, митохондрии
Каждая клетка – сложная высокоупорядоченная система и содержимое клетки находится в состоянии непрерывного активного метаболизма.
Реакции в клетке подразделяют на две группы:
1) Реакции синтеза крупных молекулярных структур, которые протекают с затратой энергии, называются реакциями синтеза, ассимиляцией или анаболизмом.
2) Реакции распада крупных молекул на более мелкие и простые, протекающие обычно с высвобождением энергии. Реакции диссимиляции или катаболизма.
Реакции ассимиляции формируют так называемый пластический тип метаболизма. А реакции диссимиляции – это реакции энергетического обмена.
Все реакции пластического и энергетического обмена можно назвать метаболизмом.
Поступающие в клетку вещества служат строительным материалом для биосинтеза клеточных структур и компонентов клетки, а во-вторых, эти же вещества являются источником химической энергии.
У всех эукариотических клеток можно выделить три типа органоидов энергетического обмена. В растительных клетках это тилакоидные мембраны пластиды, в животных – внутренние мембраны митохондрий, а у аэробных бактерий – сопрягающие мембраны. На самом деле, пластиды и митохондрии имеют сопрягающую мембрану.
Для всех сопрягающих мембран характерны особенности, которые отличают эту мембрану от других мембран эукариотических клеток:
1) Сопрягающие мембраны способны синтезировать АТФ за счет внешних ресурсов.
2) Сопрягающие мембраны несут цепь переноса электронов.
3) Сопряженные мембраны имеют специальные «грибовидные» тельца, в которых находится фермент, обеспечивающий синтез молекул АТФ с названием АТФ-синтетаза.
4) Во всех сопрягающих мембранах содержится повышенная концентрация белков и низкая концентрация холестерина.
Преобладающим фосфолипидом в этих мембранах является кардиолипин, наличие которого обуславливает крайне низкую избирательную способность.
Основой для связывания двух биохимических процессов, протекающих на сопрягающей мембране является мембранный потенциал, который создается на сопрягающей мембране.
- Лекция: Введение и история
- Современные положения клеточной теории:
- Методы цитологического исследования:
- Лекция: Химический состав клетки
- Органические составляющие клетки
- Нуклеиновые кислоты
- Лекция: Формы жизни: прокариоты и эукариоты.
- Основные компартменты эукариотической клетки:
- Цитоплазма и строение биомембран.
- Функции гиалоплазмы:
- Плазмолемма выполняет следующие функции:
- 80% Атф расходуется на поддержание гомеостаза.
- Лекция: Вакуолярная система.
- Лекция: Комплекс Гольджи
- 1) Гидролитические ферменты (гидролазы), которые направляются в компартмент лизосом.
- Лизосомы.
- Вакуоли растительных клеток.
- Пероксисомы (микротельца).
- Лекция: Энергетический обмен, митохондрии
- Митохондрии.
- Лекция: Опорно-двигательная система клетки. Цитоскелет.
- Лекция: Клеточный центр (центросома)
- Лекция: Рибосомы.
- Лекция: Ядерный аппарат
- Основные белки хроматина – гистоны.
- Ядрышко.
- Поверхностный аппарат ядра
- Лекция: Клеточный цикл эукариот.
- Лекция: Митоз
- Лекция: Мейоз
- Клеточная стенка растений.
- Хлоропласт.
- Геном пластид.
- Лекция: Межклеточные контакты
- Проводящие контакты. По-разному у животных и растений.