2. Классификация элементарных частиц
Проникновение в микромир связано с открытием элементарных частиц: в конце Х1Х в. был открыт электрон, в начале ХХ в. – фотон, протон, позитрон и нейтрон. После второй мировой войны стали использовать ускорители, создающие условия высоких энергий и огромных скоростей, и установили существование более трехсот элементарных частиц. Исторически сложившийся термин «элементарные» продолжает использоваться, хотя его условность давно осознали.
Характеристики элементарных частиц: масса, заряд, время жизни, спин и квантовые числа. Масса покоя элементарных частиц определяется по отношению к массе покоя электрона. Не имеет массы покоя только фотон. По массе покоя частицы делятся на лептоны (легкие частицы: электрон и нейтрино); мезоны (средние частицы: масса от одной до тысячи масс электрона); барионы (тяжелые частицы: масса свыше тысячи масс электрона, в состав которых входят протоны, нейтроны, гипероны и многие резонансы). Частицы имеют положительный, отрицательный или нулевой заряд. Каждой частице соответствуют античастицы с противоположным зарядом (кроме фотона и двух мезонов). В 60-гг. ХХ в. появилась гипотеза о существовании частиц с дробным электрическим зарядом – кварков. По времени жизни частицы делятся на стабильные и нестабильные. К стабильным относятся фотон, две разновидности нейтрино, электрон и протон, они играют важнейшую роль в структуре макромира. Все остальные частицы относятся к нестабильным, они существуют около 10-10– 10-24 сек., а потом распадаются. Резонансами называются частицы со временем жизни 10-23 – 10-22 сек. Эти частицы распадаются еще до того, как покинут атом или ядро. Спин (от англ. – волчок, вращение) – собственный момент количества движения частиц. Свобода и поведение частиц существенно зависит от того, целое или полуцелое значение имеет спин.
Исходя из значения спина, элементарные частицы делятся на две группы: с полуцелым спином – фермионы (электрон, протон, нейтрон; поля фермионов остаются квантованными и обеспечивают переход в частицы); с целочисленным спином – бозоны (фотон, спин =1; поля бозонов переходят в классические поля, например, электромагнитное поле – свет, радиоволны). Фермионы образуют атом вещества, бозоны образуют излучение.
Фермионы делятся на класс лептонов и класс кварков. Лептоны включают 6 частиц и 6 античастиц (электрон, мюон, тау-лептон, 3 вида нейтрино). Лептоны играют важную роль в структуре мира. Кварки – электрически заряженные частицы, обладают «ароматом» и «цветом». Это – квантовые числа, выражающие определенные состояния частицы. Поскольку электрические заряды кварков имеют дробные значения, их экспериментальные поиски оказались безуспешными. Возникло предположение, что существование в природе дробного заряда возможно при условии, что кварки образуют связанные объединения, в которых суммарный электрический заряд равен либо 0, либо 1.
Кварки группируются по 2, 3 частицы, образуя адроны. Адроны делятся на 3 группы: барионы (комбинации из 3-х кварков), сюда относятся протон и нейтрон – фундаментальная основа атомных ядер; мезоны (сочетание кварка и антикварка), третья группа содержит частицы, образованные сочетанием трех антикварков, сюда относятся антипротон и антинейтрон, т.е. то, что составляет основу антивещества. Адроны – лишь небольшая часть всех образующихся из кварков частиц. Большую часть их составляют резонансы (нестабильные частицы).
- Концепции современного естествознания Справочник для студентов
- Содержание
- Введение
- Тема 1. Естественнонаучная и гуманитарная культуры
- 1. Культура и наука. Критерии науки и ее социальные функции
- 2. Мир природы и мир человека: способы познания
- 3. Сциентизм и антисциентизм – мировоззренческие позиции хх века и их влияние на развитие культуры
- 4. Этика науки
- Тема 2. Предмет и метод естествознания
- 1. Предмет естествознания. Эволюция понятия природы
- 2. Научный метод. Классификация методов естественнонаучного познания
- 3. Формы научного знания
- 4. Принципы естествознания. Способы обоснования (модели) естественнонаучного знания
- Тема 3. Динамика естествознания и тенденции его развития
- 1. Возникновение естествознания. Проблема начала науки
- 2. Основные модели развития естественнонаучного знания
- 3. Научные революции и смена картин мира
- 4. Классическое, неклассическое и постнеклассическое естествознание
- Тема 4. История естествознания
- 1. Знание о природе в древних цивилизациях
- 2. Античная наука о природе
- 3. Эпоха Средневековья: религиозная картина мира и естественнонаучное познание
- 4. Эпоха Возрождения: революция в мировоззрении и науке. Предпосылки классической науки
- 5. Галилео Галилей и его роль в становлении классической науки
- 6. И. Ньютон и его роль в становлении классической науки
- 7. Научная революция XVI-XVII веков, ее ход, содержание и основные итоги
- 8. Естествознание в XVIII-XIX вв.
- 9. Физика на рубеже XIX-XX веков, ее открытия и достижения
- 10. Предпосылки и основное содержание новейшей революции в естествознании (XX в.) Становление современной науки
- Тема 5. Структурные уровни организации материи
- Современные взгляды на структурную организацию материи
- Тема 6. Макромир: вещество и поле. Принципы классической физики
- 1. Корпускулярная и континуальная концепции природы
- 2. Детерминизм. Динамические и статистические закономерности
- 3. Основные принципы термодинамики. Значение законов термодинамики в описании явлений природы
- 4. Основные понятия, законы и принципы классической физики
- Тема 7. Открытые системы и неклассическая термодинамика
- 1. Закрытые и открытые системы. Энтропия, порядок и хаос
- 2. Концепция «Тепловой смерти Вселенной»
- 3. Неравновесная термодинамика. Рождение синергетики
- Тема 9. Микромир. Квантовая физика
- 1. Открытие микромира. Принципы квантовой физики
- 2. Классификация элементарных частиц
- 3. Фундаментальные физические взаимодействия
- Тема 9. Мегамир. Современные астрофизические и космологические концепции
- 1. Основные космологические модели Вселенной
- 2. Эволюция Вселенной. Теория «Большого взрыва»
- 3. Антропный принцип
- 4. Строение и эволюция галактик
- 5. Строение и эволюция звезд
- 6. Происхождение и строение Солнечной системы
- Тема 10. Пространство и время в современной научной картине мира
- 1. Развитие представлений о пространстве и времени в истории науки Классическая концепция пространства и времени
- 3. Формы пространства и времени
- Тема 11. Основные концепции химии
- 1. Химия как наука, ее предмет и проблемы
- 2. Основные этапы (концепции) развития химии
- 3. Химические системы и процессы
- 4. Реакционная способность веществ
- 5. Проблемы самоорганизации в современной химии
- Тема 12. Проблемы и перспективы современной геологии
- 1. Основные этапы развития наук о Земле
- 2. История геологического развития Земли
- 3. Внутреннее строение Земли
- Тема 13. Особенности биологического уровня организации материи
- 1. Биология как система наук о живой природе
- 2. Основные концепции происхождения жизни. Сущность живого
- 3. Уровни организации живой материи и ее свойства
- 4. Клеточная теория. Единство органического мира
- Тема 14. Генетика и эволюция
- 1. Концепции эволюционизма в биологии
- 2. Эволюция как основа многообразия и единства живых организмов Микроэволюция и макроэволюция
- 3. Принципы воспроизводства и развития живых систем Онтогенез и филогенез
- Тема 15. Человек как предмет естествознания
- 1. Естественнонаучная концепция антропогенеза
- 2. Физиология человека. Здоровье и работоспособность человека
- 3. Высшие психические функции и их физиологические механизмы. Сознание и мозг
- 4. Этология. Особенности поведения человека и животных
- Тема 17. Эмоции и творчество. Жизнь как ценность
- 1. Эмоции и их роль в жизни человека
- 2. Воображение и творчество. Поиски алгоритма творчества
- 3. Жизнь как ценность. Биоэтика
- Тема 17. Человек и биосфера
- 1. Эволюция представлений о биосфере Концепция Вернадского о биосфере
- 2. Ноосфера. Единство человека и природы. Русский космизм
- 3. Космические циклы и человек
- Тема 18. Принцип глобального эволюционизма и его роль в современной науке
- 1. Глобальный эволюционизм
- 2. Самоорганизация как основа эволюции