logo search
Макаревич Е

3.4.4.3. Экспрессия чужеродных генов в клетках бактерий

Регуляция экспрессии гена у прокариот. Многие бактериальные гены устроены таким образом, что они способны функционировать с существенно разной эффективностью. У E. coli, например, относительное содержание различных белков варьирует в очень широких пределах (от менее чем 0.1 % до 2 %) в зависимости от их функций; при этом каждый белок в хромосоме E. coli кодируется единственным геном. Такие вариации обусловлены действием системы контроля генной экспрессии, которая осуществляется главным образом на уровне транскрипции ДНК. Таким образом, чаще всего уровень активности гена связан с количеством синтезируемой на нем мРНК, то есть с активностью фермента РНК-полимеразы.

Последовательности ДНК, расположенные перед началом структурного гена и определяющие степень активности РНК-полимеразы, называются регуляторными последовательностями. Одна из таких последовательностей представляет собой участок ДНК, с которым связывается РНК-полимераза. Этот участок называется промотором. Промотор может быть сильным и слабым. Сильный промотор инициирует синтез иРНК часто, слабый – гораздо реже. С другой стороны, промотор может быть регулируемым и нерегулируемым. Например, промотор β-лактамазы нерегулируемый, но сильный. Использование таких промоторов не всегда удобно. Дело в том, что большое количество белка может блокировать рост бактерий. Кроме того, интенсивная транскрипция рекомбинантной ДНК может помешать репликации плазмиды, и она будет утрачена. Поэтому удобнее использовать регулируемые сильные промоторы (индуцибельные), включение которых, а значит и синтез чужеродного белка можно осуществить, когда получена большая бактериальная масса. Некоторые плазмидные векторы содержат промотор, работа которого регулируется температурочувствительным белковым продуктом гена-репрессора. Белок-репрессор активен при определенных температурах и блокирует действие промотора. Повысив температуру до 42 оС, можно "включить" промотор и быстро получить большое количество требуемого белка. В качестве индуцибельных промоторов используют также Trp-промотор триптофанового оперона, который регулируется триптофановым голоданием, lac-промотор лактазного оперона, который индуцируется субстратом (лактозой) и другие. Интенсивность транскрипции определенных структурных генов может зависеть от эффективности ее терминации, в частности, от того, как часто РНК-полимераза прекращает синтез РНК, не дойдя до этих генов. В определенных условиях происходит образование терминирующего сигнала, ослабляющего интенсивность транскрипции. Это явление получило название аттенуации, а участок ДНК – аттенуатор (ослабитель). Как и репрессия, аттенуация зависит от присутствия в среде соответствующих аминокислот.

На эффективность продуктивности рекомбинантной ДНК в существенной степени влияет количество копий этой ДНК в расчете на клетку. Суммарная активность экспрессируемого гена растет с ростом копийности плазмиды. Таким образом, используя многокопийные плазмиды, можно достичь сверхсинтеза нужных белковых продуктов. Обычно используемые плазмидные векторы (pBR 322 и др.) поддерживаются в клетке в количестве 20 – 50 копий.

Особенности организации генома эукариот. У эукариотических организмов механизм регуляции транскрипции гораздо более сложен. В результате клонирования и секвенирования генов эукариот обнаружены специфические последовательности, принимающие участие в транскрипции и трансляции.

Для эукариотической клетки характерно:

  1. Наличие интронов и экзонов в молекуле ДНК.

  2. Созревание и-РНК – вырезание интронов и сшивка экзонов.

  3. Наличие регуляторных элементов, регулирующих транскрипцию, таких как:

    • промоторы – 3 вида, на каждый из которых садится специфическая полимераза. Pol I реплицирует рибосомные гены, Pol II – структурные гены белков, Pol III – гены, кодирующие небольшие РНК. Промотор Pol I и Pol II находятся перед участком инициации транскрипции, промотор Pol III - в рамках структурного гена;

    • модуляторы – последовательности ДНК, усиливающие уровень транскрипции;

    • усилители – последовательности, усиливающие уровень транскрипции и действующие независимо от своего положения относительно кодирующей части гена и состояния начальной точки синтеза РНК;

    • терминаторы – специфические последовательности, прекращающие и трансляцию, и транскрипцию.

Эти последовательности по своей первичной структуре и расположению относительно инициирующего кодона отличаются от прокариотических, и бактериальная РНК-полимераза их не «узнает». Таким образом, для экспрессии эукариотических генов в клетках прокариот нужно, чтобы гены находились под контролем прокариотических регуляторных элементов. Это обстоятельство необходимо учитывать при конструировании векторов для экспрессии.

Экспрессия чужеродных генов в клетках прокариот. Бактериальные гены, включенные в геном, как правило, экспрессируются достаточно легко, образуя мРНК и белок в силу того, что в сигнальных последовательностях, управляющих процессами транскрипции и трансляции у различных прокариотических организмов, много общих черт.

Что касается экспрессии генов эукариот в бактериях, то она происходит крайне редко, если не создавать специальные условия, поскольку регуляторные участки эукариот отличны от таковых у бактерий. Регуляторные (сигнальные) участки не узнаются бактериальными РНК-полимеразами, что приводит к замедлению транскрипции. При клонировании геномной ДНК эукариотической клетки экспрессия генов не происходит из-за отсутствия у бактерий системы сплайсинга. Следовательно, для экспрессии эукариотических генов в клетках прокариот необходимо, чтобы данные гены находились под контролем прокариотических регуляторных элементов. В связи с этим для осуществления экспрессии эукариотического гена соответствующий участок ДНК (или синтетическая ДНК), содержащий кодирующую последовательность, в составе векторной молекулы (например, плазмиды) присоединяется к регуляторным элементам бактерии-промотора, оператору и рибосом-связывающему участку. Таким образом, в сконструированных промежуточных рекомбинантных ДНК эукариотический ген будет находиться под контролем бактериальных регуляторных элементов. Целесообразнее встраивать ген в подходящий вектор для экспрессии, который уже содержит регуляторные элементы, способствующие активной экспрессии встроенного гена после введения рекомбинантной плазмиды в бактериальную клетку. Например, к таким эффективным регуляторным участкам принадлежит промотор гена β-лактамазы (ген устойчивости к ампициллину, входящий в состав плазмиды pBR322). Однако, промотор гена β-лактамазы нерегулируемый, а использование таких промоторов не всегда удобно, так как синтезированные белки в большом количестве могут блокировать рост бактерий. В связи с этим целесообразнее использовать регулируемые сильные промоторы, включить которые для синтеза чужеродного белка можно и в том случае, когда получена большая бактериальная масса. В частности, к числу регулируемых сильных промоторов следует отнести термочувствительный промотор pL, который ответствен за экспрессию нескольких генов бактериофага. Белок-репрессор, блокирующий данный промотор, активен при 31 °С, но неактивен при 38 °С, следовательно, при инкубировании бактерий при 31 °С чужеродный ген не экспрессируется и, наоборот, повышение температуры вызывает инактивацию репрессора и высокий уровень синтеза нужного белка.

Последовательность оснований длиной 6 – 8 нуклеотидов, расположенная непосредственно перед инициирующим кодоном АУГ у Е. coli, определяет эффективность процесса трансляции. Эта последовательность представляет собой участок связывания мРНК с рибосомой, и его сдвиг в ту или иную сторону способен уменьшать эффективность трансляции мРНК. По имени исследователей, идентифицировавших этот участок, он был назван последовательностью Шайн-Дальгарно. Обычно эту последовательность включают в состав самого вектора вместе с инициирующим кодоном на нужном расстоянии. При экспрессии векторов такого типа образуется гибридный белок, в котором несколько N-концевых аминокислотных остатков происходят от источника регуляторных элементов и инициирующего кодона прокариотического гена. Такие гибридные белки часто более стабильны; обработка их химическим или ферментативным способом приводит к выделению эукариотической части белка.

Суммарная активность экспрессируемого гена возрастает с ростом числа копий рекомбинантной ДНК в расчете на клетку. Используя многокопийные плазмиды, можно получить сверхсинтез нужных белковых продуктов. Получены температурно-чувствительные мутантные плазмиды, способные накопиться в клетке до 1 – 2 тыс. копий без нарушения жизненно важных функций бактерий. Обычно же используемые плазмидные векторы поддерживаются в клетке в количестве 20 – 50 копий. Получение бактериальных штаммов-сверхпродуцентов плазмидных генов – одна из важнейших задач современной биотехнологии.

Внедрение молекулярно-биологических методов в биотехнологию позволило получать продуценты с измененными свойствами и производить уникальные субстанции в промышленных масштабах: высокотермостабильные ферменты, искусственно сконструированные пептиды и белки, человеческие терапевтические агенты – инсулин, интерфероны, эпидермальный фактор роста, фактор коагуляции, поверхностный антиген вируса гепатита В, иммуностимуляторы и т.д.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ:

  1. Дайте определение наследственности и изменчивости.

  2. Что такое «ген», «генотип», «фенотип»?

  3. Какую роль в клетке выполняют структурные гены, гены-регуляторы и гены-операторы?

  4. Чем характеризуются мутации? Какими они бывают?

  5. Какова роль комбинативных (рекомбинантных) изменений в передаче наследственных признаков?

  6. Что такое «адаптация», «модификация»?

  7. Чем отличаются мутанты от рекомбинантов?

  8. Что такое генная инженерия?

  9. Каково практическое значение учения о наследственности и изменчивости?

  10. Чем индуцированные мутации отличаются от спонтанных?

  11. Какие внешние факторы вызывают мутации микроорганизмов

  12. Структура ДНК.

  13. Полимеразы, участвующие в репликации, их ферментативная активность.

  14. Репликация ДНК. Вилка репликации, события на отстающей нити.

  15. Роль димерной структуры в координации синтеза ДНК на комплиментарных нитях.

  16. Особенности ДНК-полимераз эукариот.

  17. Роль метилирования в регуляции репликации. Терминация репликации у бактерий.

  18. Ошибки репликации, обусловленные скольжением нитей при репликации.

  19. Репарация ДНК.

  20. Механизм преимущественной репарации транскрибируемых генов. Болезни, обусловленные дефектами репарации.

  21. Рекомбинация. Понятие об общей (гомологичной) и сайтспецифической рекомбинации.

  22. Различие молекулярных механизмов общей и сайтспецифической рекомбинации.

  23. Сайтспецифическая рекомбинация двунитевой плазмиды дрожжей. Использование этой системы при анализе генов в развитии многоклеточных эукариот.

  24. Ретротранспозоны.

  25. Основные принципы технологии рекомбинантной ДНК.

  26. Внехромосомные генетические элементы - плазмиды и их функции у микроорганизмов, используемых в биотехнологических процессах.

  27. Основные физико-химические характеристики плазмид. Взаимодействие плазмид с геномом хозяина.

  28. Роль плазмидной и фаговой ДНК в генетическом конструировании продуцентов биологически активных веществ.

  29. Понятие вектора в генетической инженерии. Векторные молекулы на основе плазмидной и фаговой ДНК.

  30. Химический синтез фрагментов ДНК.

  31. Методы секвенирования (определения последовательности нуклеотидов). Химический синтез гена.

  32. Ферменты, используемые в генетической инженерии. Рестриктазы. Классификация и специфичность.

  33. Формирование "липких концов". Рестриктаза E.coli R1 и распознаваемая ею последовательность нуклеотидов. Лигазы и механизм их действия.

  34. Последовательность операций при включении чужеродного гена в векторную молекулу.

  35. Перенос вектора с чужеродным геном в микробную клетку.

  36. Генетические маркеры. Методы идентификации и изоляции клонов с рекомбинантной ДНК.

  37. Гены животной клетки; экзоны, интроны. Способы преодоления барьеров на пути экспрессии чужеродных генов.

  38. Обеспечение возможности экспрессии генов млекопитающих в микробной клетке. Обратная транскриптаза.