Модуль III. Молекулярная биология лекция 29 репликация днк
Согласно гипотезе Дж.Уотсона и Ф.Крика, каждая из цепей двойной спирали ДНК служит матрицей для репликации комплементарных дочерних цепей. При этом образуются две дочерние двухцепочечные молекулы ДНК, идентичные родительской, причем каждая из этих молекул содержит одну неизменную цепь родительской ДНК. Этот механизм репликации ДНК, названный полуконсервативным, был подтвержден в опытах на клетках Е.соli в 1957 г. М. Мезелсоном и Ф. Сталем. Исключены консервативный способ репликации, при котором одна дочерняя ДНК должна содержать обе исходные цепи, а вторая состоять из двух новосинтезированных цепей, и дисперсивный механизм репликации, при котором каждая дочерняя цепь ДНК состоит из участков родительской и новообразованной ДНК (рис.29.1).
Рис.29.1. Три механизма репликации ДНК: а) полуконсервативный; б) консервативный; в) дисперсивный
Для биосинтеза ДНК необходимы:
1) неспаренная цепь ДНК, которая служит матрицей, и цепь-затравка, к которой присоединяются новые нуклеотиды;
2) полный набор дезоксирибонуклеозидтрифосфатов (dNTP). При отсутствии хотя бы одного из них синтез ДНК не происходит. Цепь удлиняется от затравки, имеющей свободную 3´-ОН, в направлении 5´→3´ (путем присоединения следующего нуклеотида в соответствии с информацией, заложенной в матрице). Источником энергии в реакциях полимеризации мононуклеотидов является энергия, освобождаемая всеми четырьмя типами дезоксирибонуклеозидтрифосфатов, участвующих в синтезе ДНК. Расщепление пирофосфата до неорганического фосфата при участии неорганической пирофосфатазы сдвигает реакцию в сторону удлинения цепи;
3) ферменты и белки, участвующие в синтезе ДНК: ДНК-полимеразы, топоизомеразы (гиразы), хеликазы и лигазы, праймаза, ssb-белки. Весь комплекс, состоящий более чем из 20 репликативных ферментов и факторов, называется ДНК-репликазной системой, или реплисомой.
ДНК-зависимые ДНК-полимеразы – ключевые ферменты репликативного процесса, использующие принцип комплементарности для наращивания полинуклеотидных цепей. У прокариот есть три ДНК-полимеразы: Pol I, Pol II и Pol III. В репликации ДНК участвуют Pol I и Pol III. ДНК-полимераза I обладает полимеразной и (3ʹ→5ʹ , 5ʹ→3ʹ)-экзонуклеазной активностью, участвует в удалении праймера, застройке бреши, образовавшейся на месте праймера, коррекции ошибок при репликации, а также в репарации ДНК. В клетках E.coli насчитывается около 400 молекул этого фермента. Pol III осуществляет репаративный синтез ДНК.
Основным ферментом, катализирующим биосинтез новообразованной ДНК у прокариот, является ДНК-полимераза III (Pol III). Она обладает полимеразной и 3ʹ→5ʹ- экзонуклеазной активностью; синтезирует лидирующую и отстающую цепь ДНК, обладает корректорской функцией. В клетке содержится 10-20 молекул Pol III, она обладает повышенным сродством к матрице и обеспечивает высокую эффективность копирования. Структура ДНК-полимеразы Ш приведена на рис.29.2.
Рис. 29.2. Субъединичная структура ДНК-полимеразы III
Кор-фермент состоит из субъединиц (αθε), β-белок выполняет функцию «скользящего зажима», τ-белок участвует в сборке и димеризации холофермента ДНК-полимеразы. γ-комплекс (γ,δ,δ´,χ,ψ) – ДНК-зависимая АТРаза, необходим для связывание затравки с матрицей и активации ДНК-полимеразы.
ДНК-полимеразы – это полидезоксирибонуклеотид-синтетазы, ферменты класса трансфераз, катализирующие образование фосфодиэфирной связи при синтезе ДНК: R-цепь ДНК, В, Вʹ- азотистые основания:
Имеются доказательства того, что в димерной форме ДНК-полимераза III катализирует сопряженный синтез ведущей (лидирующей) и отстающей цепей ДНК при репликации. ДНК-полимеразы нуждаются в затравке (праймере), поскольку они могут присоединять дезоксирибонуклеотиды только к 3ʹ-ОН-группе.
Топоизомеразы участвуют в процессе раскручивания двойной спирали в репликативной вилке. Эти ферменты изменяют степень сверхспирализации и приводят к образованию «шарнира», который создает условия для непрерывного движения репликативной вилки. Идентифицированы два типа топоизомераз: топоизомеразы I типа надрезают одну из двух цепей ДНК, в результате чего концевой участок двойной спирали может повернуться вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Топоизомеразы типа II вносят временные разрывы в обе комплементарные цепи, изменяют степень сверхспирализации, а затем соединяют разорванные концы. Топоизомеразы помогают хеликазе раскручивать ДНК для ее репликации.
Хеликазы (от лат. helix - спираль, белок dnaB), осуществляют образование и продвижение вдоль спирали ДНК репликативной вилки – участка молекулы с расплетенными цепями. Эти ферменты для расплетения цепей используют энергию, высвобождающуюся при гидролизе АТР. Хеликазы действуют в комплексе с ssb-белками, которые связываются с одноцепочечными участками молекулы и тем самым стабилизируют расплетенный дуплекс.
Праймазы. Репликация ДНК требует РНК-праймеров. РНК-праймеры синтезируются праймазой (рис. 29.3), кодируемой dnaG геном.
Из рис 29.3 видно, что праймаза состоит из трех доменов:
■ – N-терминальный домен (110 аминокислот), содержит ДНК-связывающий мотив -цинковый палец;
■ – коровый (центральный) домен (322 аминокислоты) содержит каталитический центр;
■ – С-терминальный домен (151 аминокислота), взаимодействующий с dnaB.
Рис. 29.3. Праймаза E.coli
Праймеры, синтезируемые праймазой E.coli, начинаются с последовательности pppAG на 5´-конце и состоят примерно из 10-12 нуклеотидов. Праймазы различаются как по структуре, так и по специфичности действия.
ДНК-лигазы катализируют процессы воссоединения фрагментов цепей ДНК, участвуя в образовании ковалентных связей между 5ʹ-Р- и 3ʹ-ОН-группами соседних дезоксирибонуклеотидов. Эти ферменты также используют энергию макроэргических связей, образующуюся при гидролизе АТР.
В таблице 29.1 сведены основные функции ферментов и белков, участвующих в процессе репликации.
Таблица 29.1
Функции белков и ферментов, участвующих в репликации
-
Белки, ферменты
Основная функция
ДНК-полимераза
Полимеризация дезоксирибонуклеотидов
Хеликаза
Раскручивание цепей ДНК
Топоизомераза
Релаксация положительной сверхспирализации
Праймаза
Синтез РНК-праймера
Белок ssb
Препятствуют обратной рекомбинации расплетенных цепей в двойной спирали
ДНК-лигаза
Соединяет фрагменты Оказаки на отстающей цепи
Репликация ДНК идет в три стадии: инициация, элонгация и терминация.
У бактерий инициация репликации ДНК начинается в уникальном сайте хромосомы, точке репликации – oriC, из которой репликация осуществляется двунаправлено до точки окончания (terminus). В результате образуются две репликативные вилки, которые продвигаются в противоположных направлениях, т. е. обе цепи реплицируются одновременно.
Инициаторный белок dnaA связывается с повторяющимися сайтами связывания на oriC, образуя специализированную нуклеопротеиновую структуру. Это приводит к локальному расхождению АТ-богатой последовательности oriC, которая служит зоной связывания для репликативной хеликазы (dnaB), и белка dnaC (рис.29.4).
Рис.29.4. Инициация репликации ДНК
Далее dnaB активируется удалением dnaC, движется на определенное расстояние в направлении 5ʹ→3ʹ и взаимодействует с праймазой dnaG. Праймаза синтезирует короткие РНК-праймеры для холофермента ДНК-полимеразы Ш.
В месте инициации образуется промежуточный комплекс, состоящий по меньшей мере из пяти белков. Один из них – белок dnaB – может передвигаться вдоль ДНК, используя энергию гидролиза АТР, а также служит сигналом для активации праймазы (рис.29.5).
а) б)
Рис. 29.5. Образование репликативной вилки и праймера на лидирующей цепи ДНК (а); переход Pol III вместе с праймазой на отстающую цепь ДНК
Праймаза является компонентом праймосомы, состоящей из нескольких различных субъединиц. В состав праймосомы входит также комплекс белков DnaВ и DnaС, который вблизи репликационной вилки периодически участвует в формировании специфической вторичной структуры ДНК, подходящей для узнавания праймазой.
Инициация репликации ДНК заканчивается образованием репликативной вилки и синтезом РНК-затравки на лидирующей цепи ДНК (рис.29.5) благодаря формированию репликационного комплекса (рис.29.6).
Рис.29.6. Репликационный комплекс E.coli
В процессе элонгации происходит наращивание дочерних полинуклеотидных цепей ДНК. Каждая репликативная вилка включает, по крайней мере, две молекулы ДНК-полимеразы III, ассоциированные с несколькими вспомогательными белками. К последним относятся ДНК-топоизомеразы (гиразы), которые раскручивают плотно свернутую двойную спираль ДНК, и хеликазы, которые расплетают двухтяжевую ДНК на две цепи.
Ведущая цепь ДНК реплицируется непрерывно в направлении, совпадающем с движением репликативной вилки. Отстающая цепь считывается в направлении, противоположном движению репликативной вилки. Преодоление антипараллельности цепей ДНК при репликации, возможно, достигается путем образования петельной структуры (рис.29.7).
Вначале на отстающей цепи синтезируются короткие фрагменты новой цепи ДНК, так называемые фрагменты Оказаки, названные так по имени их первооткрывателя. Каждый фрагмент начинается с короткой РНК-затравки (праймера), необходимой для функционирования ДНК-полимеразы. ДНК-полимераза III достраивает этот праймер до фрагмента ДНК длиной 1000-2000 дезоксинуклеотидных звеньев.
Рис.29.7. Гипотетический механизм преодоления антипараллельностицепей ДНК
Кроме полимеризации цепей, которую осуществляет Рol III, в ходе элонгации ДНК происходят следующие события:
1) вырезание РНК-праймеров из лидирующей цепи и из каждого фрагмента Оказаки. Эту функцию выполняет Pol I, благодаря 5ʹ→3ʹ-экзонуклеазной активности;
2) заполнение брешей, оставшихся после удаления праймеров. В этом процессе участвует также ДНК-полимераза I, используя для встраивания нуклеотидов 3ʹ-ОН-группу соседнего фрагмента Оказаки (рис.29.8);
3) соединение фрагментов ДНК в отстающей цепи с помощью фермента ДНК-лигазы;
4) исправление ошибок репликации, благодаря 3ʹ→5ʹ-экзонуклеазной активности, которой обладают как Pol III, так и Pol I.
Рис.29.8. Механизм действия ДНК-полимеразы I
В целом, последовательность событий, происходящих при репликации ДНК, можно представить в виде следующей схемы (рис.29.9).
Рис.29.9. Основные участники и события репликации ДНК
Терминация синтеза ДНК наступает вследствие исчерпания матрицы. Репликационные «глазки» сливаются, и на каждой матрице образуется дочерняя цепь ДНК.
- Лекции по курсу биохимия и молекулярная биология для студентов направления биология
- Оглавление
- Введение
- Модуль 1. Статическая биохимия
- Лекция 1
- Строение, свойства, биологическая роль
- Моно – и олигосахаридов
- Классификация углеводов
- Моносахариды
- Стереоизомерия моносахаридов
- Представители моносахаридов
- Олигосахариды
- Отдельные представители дисахаридов
- Лекция 2 строение, свойства, биологическая роль
- Отдельные представители полисахаридов
- Лекция 3 строение, свойства, биологическая роль простых липидов
- Классификация
- Стероиды
- Желчные кислоты
- Лекция 4 строение, свойства, биологическая роль сложных липидов
- Лекция 5 аминокислотный состав белков Белки и их функции
- Функции белков
- Элементарный состав белков
- Методы выделения и очистки белков
- Аминокислотный состав белков
- Химические свойства аминокислот
- Классификация аминокислот, заменимые и незаменимые аминокислоты
- Лекция 6 уровни структурной организации белков Структурная организация белков
- Первичная структура белка: методы исследования. Структурные особенности пептидной связи
- Номенклатура пептидов и полипептидов. Природные пептиды: глутатион, карнозин, ансерин, грамицидин s, окситоцин, энкефалины
- Отдельные представители пептидов
- Вторичная структура белков: -спираль, ее основные характеристики, -структура, -изгиб. Роль водородных связей в формировании вторичной структуры. Сверхвторичные (надвторичные) структуры белка
- Третичная структура белков. Типы нековалентных связей, стабилизирующих третичную структуру. Роль s-s-мостиков в формировании третичной структуры некоторых белков
- Заимодействия между субъединицами, стабилизирующие четвертичную структуру. Функциональное значение четвертичной структуры белков
- Лекция 7
- Физико-химические свойства белков
- Ионизация, гидратация, растворимость,
- Осмотические и онкотические свойства, оптические свойства
- Молекулярная масса и размеры белков. Методы определения молекулярной массы белков. Необходимость применения комплекса методов для точной оценки молекулярной массы белков
- Денатурация белков
- Лекция 8 классификация белков. Простые и сложные белки Принципы классификации белков
- Фибриллярные белки
- Глобулярные белки
- Сложные белки
- Липопротеины
- Гликопротеины
- Протеогликаны
- Фосфопротеины
- Металлопротеины
- Нуклеопротеины
- Хромопротеины
- Гемоглобин
- Миоглобин
- Цитохромы электронтранспортной цепи
- Хлорофиллы
- Флавопротеины
- Лекция 9 сложные белки Гликопротеины
- Фосфопротеины
- Липопротеины
- Металлопротеины
- Лекция 10 строение, свойства, биологическая роль нуклеотидов
- Циклические нуклеотиды
- Лекция 11 строение, свойства, биологическая роль нуклеиновых кислот
- Рибосомальные рнк
- Лекция 12 витамины – биологическая роль, классификация. Водорастворимые витамины
- Витамин в1 (тиамин)
- Витамин в2 (рибофлавин)
- Витамин в3 (рр, никотиновая кислота, никотинамид)
- Витамин в5 (пантотеновая кислота)
- Витамин в6 (пиридоксин, пиридоксаль, пиридоксамин)
- Витамин в9 (фолиевая кислота)
- Витамин в12 (кобалами)
- Витамин н (биотин)
- Витамин с (аскорбиновая кислота)
- Витамин р (рутин)
- Лекция 13 жирорастворимые витамины Витамин а (ретинол)
- Витамин d (кальциферол)
- Витамин е (токоферол)
- Витамин к (нафтохинон)
- Лекция 14
- Ферменты – строение: свойства, механизм действия
- Понятие о ферментах.
- Сущность явлений ферментативного катализа
- Структурная организация ферментов
- 3. Роль металлов в регуляции aктивности ферментов
- Изоферменты: биологическая роль
- Механизм действия ферментов
- Специфичность действия ферментов
- Стационарная кинетика ферментативных реакций
- Концентрация субстрата
- Концентрация фермента
- Температура
- Уравнение Михаэлиса-Ментен
- Единицы ферментов
- Лекция 15
- Ингибиторы ферментов
- Регуляция каталитичекой активности ферментов
- Изостерическая регуляция
- Аллостерический контроль активности ферментов
- Регуляция ферментов ковалентной модификацией
- Регуляция ферментов ограниченным протеолизом (активация зимогенов)
- Регуляция активности мультиэнзимных комплексов
- Классификация и номенклатура ферментов
- Характеристика отдельных классов ферментов
- Ферменты в клинической диагностике. Энзимопатии
- Модуль II. Динамическая биохимия
- Катаболические, анаболические, амфиболические пути
- Метаболизм углеводов
- Расщепление углеводов в пищеварительном тракте
- Переваривание углеводов в ротовой полости
- Переваривание углеводов в кишечнике
- Амилолитические ферменты: характеристика Панкреатическая -амилаза
- Сахаразо-изомальтазный комплекс
- Гликоамилазный комплекс
- Трегалаза
- Всасывание моносахаридов в тонком кишечнике и их дальнейший транспорт. Глюкозные транспортеры
- Всасывание моносахаридов в кишечнике
- Транспорт глюкозы из крови в клетки
- Лекция 17
- Анаэробный катаболизм углеводов
- Анаэробное окисление глюкозы. Гликолиз. Внутриклеточная
- Локализация процесса
- Отдельные реакции гликолиза, их термодинамические характеристики. Образование 2,3-дифосфоглицерата в шунте Рапопорта-Люберинга
- Расщепление гликогена (гликогенолиз). Строение, механизм действия и регуляция гликогенфосфорилазы
- Спиртовое и молочнокислое брожение
- Лекция 18
- Аэробный катаболизм углеводов (часть 1)
- Аэробный метаболизм пирувата. Митохондрии: структура
- И энергетические функции
- Окислительное декарбоксилирование пирувата. Строение
- Цикл лимонной кислоты. Отдельные реакции цикла, их термодинамическая характеристики. Суммарное уравнение окисления ацетил-CоА в цикле Кребса
- Лекция 19
- Аэробный катаболизм углеводов (часть 2)
- Регуляция цикла Кребса на уровне цитратсинтазы,
- Изоцитратдегидрогеназы и -кетоглутаратдегидрогеназного комплекса
- Амфиболическое значение цикла Кребса. Необходимость анаплеротических путей, пополняющих запас компонентов, участвующих в цикле
- Зависимое от атp и биотина карбоксилирование пирувата: анаплеротический путь синтеза оксалоацетата
- Пентозофосфатный путь (гексозомонофосфатный шунт)
- Отдельные реакции пфп, их термодинамические характеристики.
- Суммарное уравнение пентозофосфатного пути.
- Регуляция пентозофосфатного пути на уровне
- Глюкозо-6-фосфатдегидрогеназы
- Участки перекреста пфп с гликолизом
- Циклический характер пфп
- Лекция 20 биосинтез углеводов
- Глюконеогенез
- В последующей реакции, катализируемой ферментом фосфоенолпируваткарбоксикиназой, из оксалоацетата образуется фосфоенолпируват. Реакция Mg2-зависимая и донором фосфата служит gtp.
- Лекция 21 расщепление пищевых и тканевых липидов
- Катаболизм липидов
- Всасывание продуктов расщепления липидов
- Транспорт липидов
- Метаболизм глицерола
- Лекция 22 катаболизм жирных кислот
- Активация жирной кислоты
- Транспорт ацил-СоА в митохондрии
- Катаболизм ненасыщенных жирных кислот
- Катаболизм жирных кислот с нечетным числом атомов углерода
- Образование кетоновых тел (кетогенез)
- Кетоновые тела как источники энергии
- Глиоксилатный цикл
- Лекция 23 биосинтез жирных кислот и триацилглицеролов
- Строение синтазы жирных кислот
- Механизм синтеза жирных кислот
- Транспорт ацетил-СоА из митохондрий в цитозоль
- Образование малонил-СоА
- Наращивание (элонгация) углеродной цепи жирной кислоты
- Синтез других предельных и непредельных жк
- Биосинтез триацилглицеролов
- Лекция 24 биосинтез холестерола и желчных кислот
- Биосинтез холестерола
- Регуляция биосинтеза хс
- Биосинтез желчных кислот
- Лекция 25
- Биологическое окисление. Ферменты, участвующие в биологическом окислении
- Свободное окисление и его биологическая роль. Цитохром р-450
- Микросомальная система окисления
- Механизм гидроксилирования
- Лекция 26
- Цепь переноса электронов и протонов внутренней мембраны
- Митохондрий (дыхательная цепь, редокс-цепь). Компоненты
- Дыхательной цепи: флавопротеины, железосерные белки, коэнзим q, цитохромы в, с1, с, аа3. Топография дыхательных переносчиков
- В редокс-цепи
- Убихинон окисленный CoQ
- Энергетическое значение ступенчатого транспорта электронов от окисляемых субстратов к молекулярному кислороду. Окислительное фосфорилирование в дыхательной цепи
- Организация компонентов дыхательной цепи в виде четырех
- Локализация пунктов сопряжения окисления и фосфорилирования в дыхательной цепи на основании редокс-потенциалов, действия специфических ингибиторов (ротенон, амитал, антимицин а, цианид, со, NaN3)
- Полные и редуцированные дыхательные цепи
- Лекция 27
- Строение атp-синтазного комплекса. Механизм образования атp. Обратимость реакции, катализируемой атp-синтазой. Разобщение транспорта электронов и синтеза атp; действие 2,4-динитрофенола
- Механизм образования атp
- Окисление цитоплазматического nadh в дыхательной цепи. Глицеролфосфатный и малат-аспартатный челночные механизм
- Лекция 28 интеграция клеточного метаболизма
- Основные аспекты регуляции метаболизма
- Регуляция на уровне транскрипции
- Аллостерическая регуляция активности ферментов
- Ковалентная модификация ферментов
- Гормональная регуляция
- Посттранскрипционная и посттрансляционная модификация макромолекул
- Изменение концентрации метаболитов
- Мембранная регуляция
- Модуль III. Молекулярная биология лекция 29 репликация днк
- Точность репликации
- Репликация днк у эукариот
- Репаративный синтез днк
- Лекция 30 транскрипция (биосинтез рнк)
- Транскрипция у прокариот
- Инициация транскрипции
- Элонгация транскрипции
- Терминация транскрипции
- Транскрипция у эукариот
- Механизм индукции на примере Lac-оперона
- Катаболитная репрессия
- Лекция 31 тРансляция (биосинтез белка)
- Роль тРнк в трансляции
- Аминоацил-тРнк-синтетазы
- Белоксинтезирующая система клетки
- Эффективность трансляции
- Точность белкового синтеза
- Энергетические затраты на трансляцию
- Посттрансляционные модификации полипептидной цепи
- Библиографический список Основная литература
- Дополнительная литература