logo search
лекции шилина

3.2. Понятие о квантовой гравитации

Можно ли вообще говорить о квантовых проявлениях гравитационного взаимодействия? Как принято считать, принципы квантовой механики носят универсальный характер и применимы к любому физическому объекту. В этом смысле гравитационное поле не представляет исключения. Теоретические исследования показывают, что на квантовом уровне гравитационное взаимодействие переносится элементарной частицей, называемой гравитон. Можно отметить, что гравитон является безмассовым бозоном со спином 2. Гравитационное взаимодействие между частицами, обусловленное обменом гравитоном, условно изображается следующим образом:

Частица испускает гравитон, в силу чего состояние ее движения изменяется. Другая частица поглощает гравитон и также изменяет состояние своего движения. В результате возникает воздействие частиц друг на друга.

Как мы уже отмечали, константой связи, характеризующей гравитационное взаимодействие, является ньютоновская константа G. Хорошо известно, что G – размерная величина. Очевидно, что для оценки интенсивности взаимодействия удобно иметь безразмерную константу связи. Чтобы получить такую константу, можно использовать фундаментальные постоянные: h (постоянная Планка) и c (скорость света) – и ввести какую-нибудь эталонную массу, например массу протона mp. Тогда безразмерная константа связи гравитационного взаимодействия будет, что, конечно, является очень малой величиной.

Интересно отметить, что из фундаментальных постоянных G, h, c можно построить величины, имеющие размерность длины, времени, плотности, массы, энергии. Эти величины называются планковскими. Каждая фундаментальная физическая константа характеризует определенный круг физических явлений: G – гравитационные явления, h – квантовые, c – релятивистские. Поэтому если в какое-то соотношение входят одновременно G, h, c, то это значит, что данное соотношение описывает явление, которое одновременно является гравитационным, квантовым и релятивистским. Таким образом, существование планковских величин указывает на возможное существование соответствующих явлений в Природе.

Конечно, численные значения lPl и tPl очень малы по сравнению с характерными значениями величин в макромире. Но это означает только то, что квантовогравитационные эффекты слабо проявляют себя. Они могли быть существенны лишь тогда, когда характерные параметры стали бы сравнимыми с планковскими величинами.

Отличительной чертой явлений микромира является то обстоятельство, что физические величины оказываются подверженными так называемым квантовым флуктуациям. Это означает, что при многократных измерениях физической величины в определенном состоянии принципиально должны получаться различные численные значения, обусловленные неконтролируемым взаимодействием прибора с наблюдаемым объектом. Вспомним, что гравитация связана с проявлением кривизны пространства-времени, то есть с геометрией пространства-времени. Поэтому следует ожидать, что на временах порядка tPl и расстояниях порядка lPl геометрия пространства-времени должна стать квантовым объектом, геометрические характеристики должны испытывать квантовые флуктуации. Другими словами, на планковских масштабах нет никакой фиксированной пространственно-временной геометрии, образно говоря, пространство-время представляет собой бурлящую пену.

Последовательная квантовая теория гравитации не построена. В силу чрезвычайно малых значений lPl, tPl следует ожидать, что в любом обозримом будущем не удастся поставить эксперименты, в которых проявили бы себя квантовогравитационные эффекты. Поэтому теоретическое исследование вопросов квантовой гравитации остается единственной возможностью продвижения вперед. Есть ли, однако, явления, где квантовая гравитация могла бы оказаться существенной? Да, есть, и мы о них уже говорили. Это гравитационный коллапс и Большой Взрыв. Согласно классической теории гравитации, объект, подверженный гравитационному коллапсу, должен сжиматься до сколь угодно малых размеров. Это означает, что его размеры могут стать сравнимыми с lPl, где классическая теория уже неприменима. Точно так же в процессе Большого Взрыва возраст Вселенной был сравним с tPl и она имела размеры порядка lPl. Это означает, что понимание физики Большого Взрыва невозможно в рамках классической теории. Таким образом, описание конечной стадии гравитационного коллапса и начальной стадии эволюции Вселенной может быть осуществлено только с привлечением квантовой теории гравитации.