logo
Studentam_SGMU_KP_2012_Sovrem_konts_estest (2) / КСЕ Учебники / Гусейханов&Раджабов_Концепции современного естествознания_2007

8.3. Энергия и ее проявления в природе

Наука научила людей пользоваться энергией, скрытой в сокровищницах Земли. Она должна вести человека в сокровищницы неба и научить его улавливать там энергию солнечных лучей.

К. Э. Циолковский

Понятие энергии занимает фундаментальное положение в структуре современного естествознания. Под энергией понима-

167

ют единую меру различных форм движения и взаимодействия материи. Она проявляется во множестве различных видов.

В механике различают два вида энергии: кинетическую и потенциальную. Кинетической энергией тела называют энергию, являющуюся мерой его механического движения и измеряемую той работой, которую может совершить тело при его торможении до полной остановки. Потенциальная энергия определяется как свойство системы материальных тел совершать работу при изменении положения или конфигурации тел в системе. Работа, совершаемая консервативными силами при изменении конфигурации системы, т. е. расположения всех ее частей по отношению к системе отсчета, не зависит от того, как было осуществлено это изменение при переводе системы из начальной конфигурации в конечную, в которых система имела различные значения энергии. Значит, работа может быть определена как мера изменения энергии, а энергия — как способность тела совершать работу. Причем применительно к механическим процессам полная энергия замкнутой консервативной системы тел, равная сумме их потенциальной и кинетической энергии, остается величиной постоянной. То есть всякое изменение потенциальной и кинетической энергии есть превращение потенциальной энергии в кинетическую, а кинетической в потенциальную. В случае механического движения передача энергии происходит в форме работы в процессе силового взаимодействия тел.

В случае, когда помимо консервативной силы, зависящей только от положения тела, в системе действуют и силы трения, тогда любая работа, совершаемая над телом извне, равна сумме приращений кинетической, потенциальной и внутренней энергии. Значит, механическая энергия при трении переходит во внутреннюю энергию, что сопровождается изменением состояния, степени нагретости или объема тела. Величину внутренней энергии (U) можно увеличить двумя эквивалентными способами — совершая над телом механическую работу (А) или сообщая ему количество теплоты (Q):

168

Значит, количество теплоты является мерой изменения внутренней энергии тела и выражает тепловую энергию. Установлен эквивалент между количеством теплоты и работой. Теплота может передаваться от тела к телу, переходить в работу, возникать при трении, но при этом она не является сохраняющей величиной. Механическая и тепловая энергии — это только две из многих форм энергии. Все, что может быть превращено в какую-либо из этих форм, есть тоже форма энергии. Химические реакции протекают с выделением или поглощением теплоты, показывая взаимопревращение химической энергии и теплоты. Работы Фарадея и Ленца приводят к открытию взаимопревращений электрической и магнитной энергий. Изучение процессов, происходящих в контактах двух металлических проводников, проделанных Пельтье и Ленцем, свидетельствуют о взаимопревращении электрической энергии и теплоты. Джоуль устанавливает соотношение между величиной количества теплоты, выделяемой при прохождении электрического тока через проводник, и величиной самого тока и сопротивления проводника (закон Джоуля—Ленца).

Электрическая и магнитная энергии могут проявляться как единая электромагнитная энергия. В частном случае электромагнитную энергию испускают нагретые тела (примером этого служит солнечная энергия). Иногда солнечную энергию рассматривают лишь как прямое солнечное излучение, которое накапливается на Земле в виде гидроэнергии и энергии ископаемого горючего. Интенсивность солнечной энергии на поверхности Земли в средних широтах в летнее время примерно составляет 1 кВт/м2. Если 0,1% всей поверхности Земли преобразуют эту солнечную энергию в электрическую с эффективностью 5%, то электрическая энергия, генерируемая ежегодно, будет в 40 раз больше современного годового уровня потребления ее во всем мире.

В теории относительности было показано, что энергия покоя является энергетическим выражением массы тела, находящегося в состоянии покоя. А Эйнштейн показал, что энергия покоя тела с массой m0 равна Е0 = m0 с2. Согласно этой формуле один

169

грамм вещества обладает энергией покоя 9 ■ 1013 Дж (1033 эВ). В обычных условиях колоссальная энергия покоя находится как бы в скрытом состоянии. Условия, при которых возможно освобождение всей энергии покоя вещества, весьма необычны: каждый атом тела должен встречаться с антиатомом антитела. При такой встрече произойдет процесс аннигиляции, т. е. превращение энергии покоя обоих тел в другую форму энергии (например, в энергию покоя и кинетическую энергию образующихся при аннигиляции более легких, чем нуклоны, частиц). Разумеется, аннигиляция элементарных частиц пока практического значения (как источник энергии) не имеет, так как для создания условий, при которых она может происходить, приходится затрачивать неизмеримо больше энергии, чем ее выделяется при аннигиляции.

Далеко не все вещества пригодны как источники энергии, и величины выделяемой энергии веществами имеют существенные различия. Например, величина энергии, необходимой для того чтобы удерживать валентный электрон в атоме, составляет всего несколько электронвольт (эВ), в то время как величина энергии, связывающей нуклоны (протоны и нейтроны) в атомном ядре, достигает порядка 10 млн эВ на каждый нуклон. Следовательно, энергия, высвобождаемая на один атом при сжигании ископаемого горючего, составляет несколько электронвольт, в то время как энергия, высвобождаемая в результате ядерных взаимодействий, исчисляется миллионами электронвольт (МэВ). Химическая реакция (химическая энергия):

Полная энергия, запасенная во всех делящихся материалах, имеет такой же порядок величины, что и энергия, запасенная во

170

всех месторождениях ископаемых топлив. Энергия же, выделяемая в результате синтеза ядер, практически неограниченная.

Современная энергетика в основном базируется на горючих ископаемых, каковыми являются каменный и бурый уголь, сланцы, торф, нефть и газ. В настоящее время в мире добывают около 7 млрд т условного топлива в год. Из той энергии, которая вырабатывается из органического топлива, около 25% расходует транспорт (автомобильный, авиационный, железнодорожный, морской) и сельскохозяйственные машины, 30-35% потребляют тепловые электростанции, около 30% идет в металлургическую и химическую промышленность, в машиностроение и производство стройматериалов и, наконец, не более 10% расходуется на бытовые нужды. Естественные запасы органического топлива пока еще велики, но не безграничны. Считают, что с учетом постоянного, но все уменьшающегося пополнения этих запасов их будет достаточно еще на 80 лет или, по другим данным, на 120-140 лет. Поэтому совершенно естественно и давно встал вопрос о новых источниках энергии. Решается этот вопрос во многих направлениях. Наиболее надежным из них считается расширение перспектив привлечения гидроресурсов, доля которых в стационарной энергетике сегодня составляет 17%. Но расширение сети гидроэлектростанций возможно лишь до определенного предела, разрешенного экологическими нормами. И этот предел применительно к большим рекам нашей страны достигнут, хотя в Дагестане еще есть резервы. Ставится задача использования энергии приливов и отливов морей, энергии ветра и волн. Не прекращается поиск новых запасов нефти на шельфах морского побережья. Но сжигание даже добываемых ныне семи миллиардов тонн органического топлива ведет к выбросу в атмосферу 15-17 млрд т углекислого газа с примесями СО и даже SO2 со всеми вытекающими отсюда последствиями.

В связи с этим в настоящее время особенно заманчивым является процесс преобразования энергии покоя в кинетическую энергию ("превращение массы в энергию"). Так как при обычных условиях любое тело обладает огромным резервом неиспользуемой энергии покоя Е0 = m0 с2, то даже ничтожно

171

малое уменьшение массы покоя должно приводить к заметному возрастанию кинетической энергии. Атомная энергия получается за счет "переработки" примерно 0,1% массы самого тяжелого из существующих в природе веществ — урана, термоядерная энергия — за счет переработки части массы наиболее легких веществ, например дейтерия. В каждом из этих направлений есть две задачи: мгновенное и медленное преобразование массы в энергию. В первом направлении полностью решены обе задачи: ученые и инженеры умеют освобождать атомную энергию как в мгновенном процессе взрывного типа (атомная бомба), так и в медленном управляемом процессе (ядерный реактор). В настоящее время атомная энергия широко используется в науке, промышленности и на транспорте. Во втором направлении пока решена только половина задачи — термоядерную энергию научились освобождать в мгновенном процессе взрывного типа (водородная бомба). Осуществление процесса медленного управляемого термоядерного синтеза оказалось настолько трудной задачей, что сейчас нельзя даже приблизительно указать, когда она будет решена. Но она будет решена, так как эти трудности, по-видимому, не носят принципиального характера.

Любое атомное ядро состоит из некоторого количества (Z) протонов и (A-Z) нейтронов, удерживаемых вместе ядерными силами притяжения (сильные взаимодействия). Ядерные силы отличаются очень большой интенсивностью на расстояниях ~ 10-13 см и чрезвычайно быстро ослабевают с ростом расстояния. Так как для разделения ядра на нуклоны (протоны и нейтроны) надо совершить работу на преодоление ядерных сил притяжения, то энергия атомного ядра меньше энергии тех нуклонов, из которых ядро состоит. А так как энергия и масса связаны соотношением Е = m с2, то масса атомного ядра также меньше суммарной массы всех составляющих его нуклонов. Разность их значений, выраженная в энергетических единицах, называется энергией связи AW.

Энергиясвязи любого ядра положительна, и она должна составлять заметную часть, приблизительно равную 1% от его

172

энергии покоя. Если же мы заинтересуемся ее точными значениями для различных ядер и подсчитаем их по приведенной формуле, то убедимся, что они довольно сильно колеблются, в особенности у легких ядер. Доля, которую составляет энергия взаимодействия нуклонов от энергии покоя, зависит от числа взаимодействующих нуклонов. С ростом числа нуклонов она сначала возрастает, а затем уменьшается. Другими словами, нуклоны особенно прочно связаны в средних (по весу) ядрах, слабее — в тяжелых и очень легких ядрах. Главная причина различия в энергии связи разных ядер заключается в следующем. Все нуклоны, из которых состоит ядро, можно условно разделить на две группы: внутренние и поверхностные. Внутренние нуклоны окружены соседними нуклонами со всех сторон, поверхностные же — только с внутренней стороны. Поэтому внутренние нуклоны взаимодействуют с остальными нуклонами сильнее, чем поверхностные. Но процент внутренних нуклонов особенно мал у легких ядер (у самых легких ядер все нуклоны можно считать поверхностными) и постепенно увеличивается по мере их утяжеления. Поэтому энергия связи должна расти вместе с ростом числа нуклонов в ядре. Однако этот рост не может продолжаться очень долго, так как начиная с некоторого достаточно большого числа нуклонов (А = 50 - 60) количество протонов в ядре становится настолько большим, что делается заметным их взаимное отталкивание даже на фоне сильного ядерного притяжения. Это отталкивание и приводит к уменьшению энергии связи у тяжелых ядер. Поэтому ядра одних атомов устойчивы, стабильны, а других атомов химических элементов — неустойчивы и нестабильны.

Из сказанного понятно и то, откуда берется энергия при синтезе легких ядер, так же как при делении тяжелых, получаются более прочные (более устойчивые) ядра (с большей взаимосвязанностью нуклонов), чем исходные. Поэтому при слиянии легких ядер должна выделяться энергия.

Количество энергии синтеза, приходящейся на единицу массы, может в несколько раз превосходить удельную энергию деления.

173

Хорошо известно, что целый ряд атомных ядер из числа встречающихся в природе, например радий, уран, торий и др., обладают способностью самопроизвольно испускать -частицы, электроны и -кванты. Такие ядра и элементы называются радиоактивными. Про них говорят, что они обладают естественной радиоактивностью. Кроме того, было получено множество радиоактивных ядер. Явление самопроизвольного превращения одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц, называют радиоактивностью. Такие превращения претерпевают только нестабильные ядра. К числу радиоактивных процессов относятся (рис. 8.1):

  1. -распад;

  2. -распад (в том числе электронный захват);

  3. -излучение ядер;

  1. спонтанное деление ядер;

  2. протонная радиоактивность.

Существует три типа распада радиоактивных изотопов: испускание -частиц, в котором ядро одновременно теряет два протона и два нейтрона (-частицу); -распад, в котором теряется один высокоэнергетический электрон, и электронный захват, в котором теряется один высокоэнергетический фотон

174

В 1934 г. Ирен и Фредерик Жолио-Кюри обнаружили, что у некоторых веществ (AI, В, Mq) способность испускать позитроны сохраняется на некоторое время и после того, как облучение а-частицами уже прекращено. Изучение этого явления показало, что по своим свойствам оно аналогично естественной радиоактивности тяжелых элементов.

Радиоактивность, наблюдающаяся у ядер, существующих в природных условиях, называется естественной. Радиоактивность ядер, полученных посредством ядерных реакций, называется искусственной. Между искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одинаковым законам. Во всех видах радиоактивного превращения выполняются законы сохранения энергии, импульса, момента количества движения, электростатического, барионного и леп-тонного зарядов.

Одной из самых замечательных ядерных реакций является реакция деления. Делением называется реакция расщепления атомного ядра на две примерно равные по массе части (осколки деления). Тяжелые ядра (Z90) делятся как самопроизвольно (спонтанное деление), так и принудительно (вынужденное деление). В отличие от спонтанного вынужденное деление происходит практически мгновенно (t10-14 с). Для вынужденного деления ядер с Z90 достаточно их предварительно слабо возбудить, например облучая нейтронами с энергией около 1 МэВ. Некоторые ядра, например уран-235, делятся даже под действием тепловых нейтронов.

Масса (а значит, и энергия) делящегося ядра значительно превышает сумму масс осколков. В связи с этим при делении освобождается очень большая энергия Q200 МэВ, значительную часть которой (170 МэВ) уносят осколки в виде кинетической энергии. Осколки деления имеют большой избыток нейтронов. Поэтому они обладают-радиоактивными цепочками из продуктов деления, а также испускают мгновенные (два-три на один акт урана) и запаздывающие (1% мгновенных) нейтроны.

175

Большое энерговыделение, испускание нескольких нейтронов, возможность деления при небольшом возбуждении ядра позволяют осуществить цепную реакцию деления. Идея цепной реакции деления заключается в использовании вылетевших в процессе деления нейтронов для деления новых ядер с образованием новых нейтронов деления и т. д. Для нарастания цепного процесса необходимо, чтобы отношение числа нейтронов в двух последовательных положениях (так называемый коэффициент размножения нейтронов К) было больше единицы (К > 1).

Значения коэффициента размножения зависит от числа нейтронов, испускаемых в одном акте деления; от вероятности их взаимодействия с ядрами урана и других элементов при разных энергиях; от конструкции и размеров реакторной установки. В частности, активная зона реактора (область, где развивается цепная реакция) должна иметь размеры не меньше некоторой критической величины.

Цепная реакция, протекающая в уран-графитовом реакторе на тепловых нейтронах при К1,005, относится к классу медленных управляемых цепных ядерных процессов. Естественный уран не пригоден для осуществления быстрого цепного ядерного процесса взрывного типа на быстрых нейтронах. Такой процесс был осуществлен в 1945 г. на чистом изотопе урана-235 и на обладающем аналогичными свойствами изотопе плутоний-239 трансуранового элемента плутония.

Принцип работы атомной бомбы заключается в очень быстром сближении нескольких порций ядерного горючего, общее количество которых после их объединения превосходит по массе и размерам критические значения. Энергетическая эффективность атомной бомбы примерно в миллион раз превышает эффективность обычной бомбы.

После окончания Второй мировой войны основные усилия ученых-атомщиков были направлены на освоение атомной энергии в мирных целях. В 1954 г. у нас в стране была пущена первая в мире атомная электростанция, в 1957 г. спущен на воду атомный ледокол. В настоящее время атомная энергия применяется практически во всех областях народного хозяйства и науки и

176

вносит все больший вклад в мировую энергетику. Построено и работает много ядерных реакторов разных типов (на тепловых, промежуточных и быстрых нейтронах) с различными замедлителями (графит, вода, тяжелая вода, бериллий и др.) и совсем без замедлителя (на быстрых нейтронах), с разным ядерным горючим (естественный уран, обогащенный уран, плутоний и др.). Они используются и для получения энергии (атомные электростанции, суда и др.), и для различных научных исследований. И хотя чернобыльская трагедия резко снизила восторг от успехов атомной энергетики, ее развитие обещает в дальнейшем широкие возможности и электрификации, и теплофикации, и даже химизации. Проблемы надежности работы атомных электростанций и их безаварийности более всего связаны с решением вопросов защиты атомных реакторов от внешних экстремальных воздействий (например, в условиях пожара) и захоронения радиоактивных отходов. Но в ближайшей перспективе по мере развития ядерной энергетики и радиохимии хранилища изотопов, т. е. осколки ядерного деления, могут превратиться в очаги производства ценнейших элементов, в частности платиноидов. Сегодня изотопы легких платиновых металлов, образующиеся в процессе деления ядер урана и плутония на атомных станциях, доставляют хлопоты: куда бы их подальше спрятать и изолировать. Но радиохимия, изучающая химические свойства и химические превращения радиоактивных веществ, уже в ближайшее время должна решить задачу выделения этих ценных металлов и очищения их от радиоактивных примесей.

И все-таки современные электростанции нельзя считать верхом достижения атомной энергетики и энергетики вообще, хотя они сегодня вносят около 12% вклада в общий энергетический баланс. Их недостаток не только в опасности типа Чернобыля, а еще и в том, что они работают, используя в качестве ядерного топлива изотоп урана-235, доля которого в природном уране составляет всего-навсего 0,7%. Поэтому развитие атомной энергетики на основе современного поколения АЭС определяется ресурсами урана, которые по энергетическому запасу сравнимы с запасами нефти.

177

Кроме реакции деления тяжелых ядер существует еще один способ освобождения внутриядерной энергии — реакция синтеза легких ядер. Величина энерговыделения в процессе синтеза настолько велика, что при большой концентрации взаимодействующих ядер ее может оказаться достаточно для возникновения цепной термоядерной реакции. В этом процессе быстрое тепловое движение ядер поддерживается за счет энергии реакции, а сама реакция — за счет теплового движения. Для достижения необходимой кинетической энергии температура реагирующего вещества должна быть очень высокой (107-108 К). При такой температуре вещество находится в состоянии горячей, полностью ионизированной плазмы, состоящей из атомных ядер и электронов. Совершенно новые возможности открываются перед человечеством с осуществлением термоядерной реакции синтеза легких элементов. Можно представить себе три способа осуществления этой реакции:

  1. Медленная термоядерная реакция, самопроизвольно происходящая в недрах Солнца и других звезд.

  2. Быстрая самоподдерживающая термоядерная реакция неуправляемого характера, происходящая при взрыве водородной бомбы.

3. Управляемая термоядерная реакция. Неуправляемая термоядерная реакция — это водородная

бомба, взрыв которой происходит в результате ядерного взаимодействия:

приводящего к синтезу изотопа гелия Не3, содержащего в ядре два протона и один нейтрон, и обычного гелия Не4, содержащего в ядре два протона и два нейтрона. Здесь п — это нейтрон, а р — протон, Д — дейтерий и Т — тритий. При обеих реакциях Д + Д и Д + Т выделяется огромное количество тепла: один грамм газа, "сгорая", образует столько энергии, сколько получается при сгорании примерно 12 т угля! Реакции протекают при температуре 107—108 К. Поэтому удерживать столь высоко разогретую массу, состоящую из ядер, протонов и нейтронов (она получила

178

название плазмы), невозможно ни в каком котле, изготовленном из сколь угодно жаропрочного материала. Это обстоятельство оказалось главным препятствием на пути осуществления управляемой термоядерной реакции.

Но уже в 1950-х годах наши отечественные физики первыми выдвинули и экспериментально обосновали принцип магнитной изоляции ядерной плазмы, которая позволяет уменьшить теплопередачу от плазмы к стенкам реактора. Впоследствии была сконструирована установка токамак — тороидальная камера магнитного удержания ядерной плазмы как ступень к решению задачи — управлению термоядерной реакцией.

Однако чем дальше углублялись в поиск решения этой задачи, тем больше появилось новых трудностей. И хотя ученые-физики нашей страны, США, Англии и других государств продвинулись в этом направлении довольно далеко, конечная цель, как они теперь полагают, может быть достигнута не ранее чем через сто лет.

Но существуют и другие препятствия на пути термоядерной энергии, главным из которых является возможный перегрев поверхности Земли в результате вьщеления тепла термоядерными реакторами. Собственно, речь идет о разумных экологических ограничениях производства термоядерной энергии в пределах не более чем 5% от солнечной энергии, поглощаемой Землей. Однако даже и в этих пределах производство термоядерной энергии поднимает разогрев земной поверхности на 3,7°. Считают, что разогрев выше этой предельной температуры может привести к существенному изменению климата всей нашей планеты, даже к всемирному потопу за счет таяния льдов Антарктиды и Гренландии. Так что нужны меры по поиску экологически безупречных и практически неисчерпаемых источников энергии.

Самой рациональной из таких мер является использование солнечной энергии. Эта мера никогда не приведет к перегреву Земли и к загрязнению ее атмосферы, поверхности и океанов. Солнце ежесекундно посылает на Землю 4 триллиона калорий тепла. Около половины его рассеивается и поглощается атмосферой и около 10% задерживается в капельно-жидких и пыле-

179

вых облаках (рис. 8.2). И все же остающаяся доля доходящей до поверхности солнечной энергии оказывается грандиозной, в десятки раз превышающей предельно допустимое производство термоядерной энергии.

Известные в настоящее время способы преобразования солнечной энергии в те виды, которые можно использовать в энергетике, условно делят на четыре типа: теплотехнические, физические, химические и биологические. Сегодня самыми распространенными являются теплотехнические способы. Но они находятся в зависимости от климатических условий, а их КПД при превращении тепловой энергии в электричес-

180

кую и механическую не превышает 5%. Физические преобразователи солнечной энергии, в основе которых находятся полупроводниковые фотоэлементы, пока не нашли широкого применения. Они используются в космических кораблях. А построенные на базе кремневых фотоэлементов в качестве опытных наземные электростанции выдают энергию, которая примерно в 100 раз дороже электроэнергии, получаемой на атомных станциях.

Биологическое преобразование солнечной энергии происходит в результате фотосинтеза, происходящего в растениях. Благодаря этому на Земле образовались ископаемые топлива. Хотя на фотосинтез расходуется менее одного процента от всей солнечной энергии, падающей на Землю, урожай зеленой массы растений за год по своей калорийности примерно равен добываемым за год из недр Земли горючим ископаемым.

В настоящее время стала актуальной задача химического преобразования солнечной энергии, т. е. аккумулирование и запасание солнечной энергии методом фотосинтеза. В этом отношении представляет интерес получение на основе преобразования солнечной энергии водорода из воды. Разрабатываемые ныне искусственные молекулярные фотокаталитические системы все более приближаются к природным фотосинтезирующим объектам не только по принципу их действия, но и по самой организации систем. Поэтому, возможно, в недалеком будущем удастся воспроизвести в искусственных условиях способность фотосинтезирующего аппарата растений запасать солнечную энергию в виде энергии химического топлива с одновременным выделением кислорода и КПД, близким к 40-50%. Во всяком случае, широкомасштабное преобразование солнечной энергии в энергию химических топлив поставлено на очередь дня. Водород является самым высококалорийным и экологически чистым топливом. Он удобен и для стационарной, и для транспортной энергетики. Бесспорно, это — универсальное топливо энергетики будущего.

181