19.1. Системный метод исследования
В широком смысле слова под системным исследованием предметов и явлений окружающего нас мира понимают такой метод, при котором они рассматриваются как части и элементы определенного целостного образования. Эти части или элементы, взаимодействуя друг с другом, определяют новые, целостные свойства системы, которые отсутствуют у отдельных ее элементов. Главное, что определяет систему, — это взаимосвязь и взаимодействие частей в рамках целого. Для системного исследования характерно именно целостное рассмотрение, установление взаимодействия составных частей или элементов совокупности, несводимость свойств целого к свойствам частей.
Учение о системах возникло в середине XIX в., но приобрело особенно важное значение в XX в. Его иначе называют еще системным подходом к изучаемым объектам, или системным анализом.
Система — это такая совокупность элементов, или частей, в которой существует их взаимное влияние и взаимное качественное преобразование. С этой точки зрения современное естествознание приблизилось к тому, чтобы стать настоящей системой, потому что все его части ныне взаимосвязаны, в нем нет уже ни одной естественной науки в рафинированно чистом виде.
474
Под системой понимают совокупность компонентов и устойчивых, повторяющихся связей между ними. Процесс системного рассмотрения объектов широко применяется в самых различных областях общественных, естественных и технических наук, в практике социального планирования и управления в обществе, при решении комплексных социальных проблем, при подготовке и реализации разнообразных целевых программ.
Основными свойствами систем являются следующие:
всеобщий характер, поскольку в качестве системы могут рассматриваться все без исключения предметы и явления окружающего мира;
невещественность;
внутренняя противоречивость (конкретность и абстрактность, целостность и дискретность, непрерывность и прерывность);
способность к взаимодействию;
упорядоченность и целостность;
устойчивость и взаимообусловленность.
Способность процессов и явлений мира образовывать системы, наличие систем, системного строения материальной действительности и форм ее познания получила название системности. Понятие системности отражает одну из характерных признаков действительности: способность вступать в такого рода взаимодействия, в результате которых образуются новые качества, не присущие исходным объектам взаимодействия.
Система — это множество объектов вместе с отношениями между объектами, между их свойствами, которые взаимодействуют между собой таким образом, что обусловливают возникновение новых, целостных, системных свойств. Для лучшего понимания природы систем рассмотрим их строение, структуру и классификацию.
Строение системы характеризуется теми компонентами, из которых она образована. Такими компонентами являются: подсистемы, части или элементы системы. Подсистемы составляют наибольшие части системы, которые обладают определенной автономностью, но в то же время они подчинены и управля-
475
ются системой. Элементами называют наименьшие единицы системы.
Структурой системы называют совокупность тех специфических взаимосвязей и взаимодействий, благодаря которым возникают новые целостные свойства, присущие только системе и отсутствующие у отдельных ее компонентов.
Классификация систем может производиться по самым разным основаниям деления. Прежде всего все системы можно разделить на материальные и идеальные. К материальным системам относится подавляющее большинство систем неорганического, органического и социального характера. Материальными системами называют их потому, что их содержание и свойства не зависят от познающего субъекта. Содержание и свойства идеальных систем зависят от субъекта. Наиболее простой классификацией систем является деление их на статические и динамические. Среди динамических систем обычно выделяют детерминистические и вероятностные системы. Такая классификация основывается на характере предсказания динамики поведения систем. По характеру взаимодействия с окружающей средой различают системы открытые и закрытые. Обычно выделяют те системы, с которыми данная система взаимодействует непосредственно и которые называют окружением или внешней средой системы. Все реальные системы в природе и обществе являются, как мы уже знаем, открытыми и, следовательно, взаимодействующими с окружением путем обмена веществом, энергией и информацией. Системы классифицируют также на простые и сложные. Простыми системами называют системы с небольшим числом переменных, взаимоотношения между которыми поддаются математической обработке и выведению универсальных законов. Сложная система состоит из большого числа переменных и большого количества связей между ними. Сложная система имеет свойства, которых нет у ее частей и которые являются следствием эффекта целостности системы.
Среди всех сложных систем наибольший интерес представляют системы с так называемой обратной связью. Пример: падение камня и кошки. Камень индифферентен по отношению
476
к нам, а кошка нет. В системе "кошка — человек" имеется обратная связь между воздействием и ее реакцией, которой нет в системе "камень — человек".
Если поведение системы усиливает внешнее воздействие, это называется положительной обратной связью, если же уменьшает внешнее воздействие — отрицательной обратной связью. Особый случай представляют гомеостатические обратные связи, которые действуют, чтобы свести внешнее воздействие к нулю. Пример: температура тела человека, которая остается постоянной благодаря гомеостатическим обратным связям.
Механизм обратной связи призван сделать систему более устойчивой, надежной и эффективной. В техническом, функциональном смысле понятие обратной связи означает, что часть выходной энергии аппарата или машины возвращается на вход. Механизм обратной связи делает систему принципиально иной, повышая степень ее внутренней организованности и давая возможность ее самоорганизации в данной системе.
Наличие механизма обратной связи позволяет дать заключение о том, что система преследует какие-то цели, т. е. что ее поведение целесообразно. Всякое целенаправленное поведение требует отрицательной обратной связи. Научное понимание целесообразности строилось на обнаружении в изучаемых предметах объективных механизмов целеполагания.
Возникновение и применение системного метода в науке знаменует значительно возросшую зрелость современного этапа его развития.
Преимуществами и перспективами системного метода исследования являются следующие:
1. Системный метод дает возможность раскрыть более глубокие закономерности, присущие широкому классу взаимо связанных явлений. Предмет этой теории составляет установ ление и вывод тех принципов, которые справедливы для систем в целом.
2. Фундаментальная роль системного метода заключается в том, что с его помощью достигается наиболее полное выражение единства научного знания. Это единство проявляется, с одной
477
стороны, во взаимосвязи различных научных дисциплин, которая выражается в возникновении новых дисциплин на "стыке" старых (физическая химия, химическая физика, биофизика, биохимия, биогеохимия и др.), а с другой — в появлении междисциплинарных направлений исследования (кибернетика, синергетика, экология и т. п.).
Единство, которое выявляется при системном подходе к науке, заключается прежде всего в установлении связей и отношений между самыми различными по сложности организации, уровню познания и целостности охвата системами, с помощью которых отображаются рост и развитие нашего знания о природе. Чем обширнее система, чем сложнее она по уровню познания и структурной организации, тем больший круг явлений она в состоянии объяснить. Таким образом, единство знания находится в прямой зависимости от его системности.
С позиций системности, единства и целостности научного знания становится возможным правильно подойти к решению таких проблем, как редукция, или сведение одних теорий естествознания к другим, синтез, или объединение кажущихся далекими друг от друга теорий, их подтверждение и опровержение данными наблюдений и экспериментов.
Системный подход в корне подрывает прежние представления о естественно-научной картине мира, когда природа рассматривалась как простая совокупность различных процессов и явлений, а не тесно взаимосвязанных и взаимодействующих систем, различных как по уровню своей организации, так и по сложности.
Системный подход исходит из того, что система как целое возникает не каким-то мистическим и иррациональным путем, а в результате конкретного, специфического взаимодействия вполне определенных реальных частей. Именно вследствие такого взаимодействия частей и образуются новые интегральные свойства системы.
Таким образом, процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом, анализ будет сопровождаться синтезом.
478
Вместе с тем представляются ошибочными взгляды сторонников философского учения холизма (от греч. holos — целое), которые считают, что целое всегда предшествует частям и всегда важнее частей. В применении к социальным системам такие принципы обосновывают подавление личности обществом, игнорирование его стремления к свободе и самостоятельности. На первый взгляд, может показаться, что концепция холизма о приоритете целого над частью согласуется с принципами системного метода, который также подчеркивает большое значение идей целостности, интеграции и единства в познании явлений и процессов природы и общества. Но при более внимательном знакомстве оказывается, что холизм преувеличивает роль целого в сравнении с частью, значение синтеза по отношению к анализу. Поэтому он является такой же односторонней концепцией, как атомизм и редукционизм. Системный метод избегает этих крайностей в познании мира. Именно вследствие взаимодействия частей образуются новые интегральные свойства системы. Но вновь возникшая целостность, в свою очередь, начинает оказывать воздействие на части, подчиняя их функционирование задачам и целям единой целостной системы.
- Концепции современного естествознания
- Рецензенты:
- Ihtik.Lib.Ru
- Глава 1. Естествозн ан и е как единая наука о природе
- 1.1. Естественно-научная и гуманитарная культуры
- 1.2. Месте науки в системе культуры и ее структура
- 1.3. Характерные черты науки
- 1.4. Естествознание - фундаментальная наука
- Глава 2. Характеристика естественно-научного познания
- 2.1. Структура научного познания
- 2.2. Основные методы научного исследования
- 2.3. Динамика развития науки. Принцип соответствия
- Глава 3. Важнейшие этапы развития естествознания
- 3.1. Система мира ангинных философов
- 3.2. Геоцентрическая и гелиоцентрическая системы строения мира
- 3.3. Механистическая и электромагнитная картины мира
- 3.4. Современная естественно-научная картина мира
- Глава 4. Концепция относительности пространства и времени
- 4.1. Понятие пространства и времени
- 4.2. Измерение времени
- 4.3. Пространство и время в специальной теории относительности
- 4.4. Общая теория относительности о пространстве и времени
- Глава 5. Строение материального мира
- 5.1. Структурное строение материального мира
- 5.2. Краткая характеристика микромира
- 5.3. Краткая характеристика макромира
- 5.4. Краткая характеристика мегамира
- Глава 6. Взаимодействия и движение структур мира
- 6.1. Четыре вида взаимодействий и их характеристика
- 6.2. Концепции близкодействия и дальнодействия
- 6.3. Вещество, поле, вакуум. Принцип суперпозиции
- 6.4. Фундаментальные постоянные мироздания
- 6.5. Антропный космологический принцип
- 6.6. Характер движения структур мира
- Глава 7. Основные закономерности микромира
- 7.1. Элементарные частицы
- 7.2. Корпускулярно-волновая природа микрообъектов
- 7.3. Концепция дополнительности
- 7.4. Вероятностный характер законов микромира. Концепции неопределенности и причинности
- 7.5. Электронная оболочка атома
- Глава 8. Концепции вещества и энергии
- 8.1. Многообразие форм материи
- 8.2. Вещество и его состояния
- 8.3. Энергия и ее проявления в природе
- 8.4. Законы сохранения в природе
- 8.5. Законы сохранения и принципы симметрии
- Глава 9. Состав, структура и взаимопревращения веществ
- 9.1. Концептуальные уровни в познании веществ
- 9.2. Состав вещества и химические системы
- 9.3. Структура вещества и его свойства
- 9.4. Химические процессы
- 9.5. Эволюция химических систем и перспективы химии
- Глава 10. Природа мегамира
- 10.1. Расстояния и размеры в мегамире
- 10.2. Земля как планета и природное тело
- 10.3. Состав и строение Солнечной системы
- 10.4. Солнце, звезды и межзвездная среда
- 10.5. Галактики
- Глава 11. Характер естествен нон ауч н ых закономерностей природы
- 11.1. Детерминизм процессов природы
- 11.2. Термодинамика и концепция необратимости
- 11.3. Проблема "тепловой смерти Вселенной"
- Глава 12. Происхождение и эволюция вселенной
- 12.1. Большой взрыв и расширяющаяся Вселенная
- 12.2. Начальная стадия Вселенной
- 12.3. Космологические модели Вселенной
- Глава 13. Происхождение и эволюция небесных тел, земли
- 13.1. Происхождение и эволюция галактик и звезд
- 13.2. Происхождение планет Солнечной системы
- 13.3. Происхождение и эволюция Земли
- 13.4. Космос и Земля
- Глава 14. Концепции происхождения жизни
- 14.1. Концепции происхождения жизни но Земле
- 14.2. Классификация уровней биологических структур и организация живых систем
- 14.3. Генная инженерия и биотехнология
- 14.4. Проблемы происхождения жизни во Вселенной
- Глава 15. Эволюция живой природы
- 15.1. Доказательства эволюции живого
- 15.2. Пути и причины эволюции живого
- 15.3. Эволюционная теория Дарвина
- 15.4. Современная теория органической эволюции
- 15.5. Синтетическая теория эволюции
- 15.6. Другие концепции эволюции живого
- Глава 16. Концепция происхождения и эволюции человека
- 16.1. Человек как предмет естественно-научного познания
- 16.2. Сходства и отличия человека от животных
- 16.3. Концепции появления человека на Земле. Антропология
- 16.4. Эволюция культуры человека. Социобиология
- 16.5. Проблемы поиска внеземных цивилизаций
- 16.6. Проблема связи с внеземными цивилизациями
- Глава 17. Человек
- 17.1. Физиология человека
- 17.2. Эмоции и творчество
- 17.3. Здоровье и работоспособность
- 17.4. Вопросы биомедицинской этики
- Глава 18. Учение о биосфере и экологии
- 18.1. Биосфера
- 18.2. Экология
- 18.3. Современные проблемы экологии
- 18.4. Ноосфера
- 18.5. Демографическая проблема
- Глава 19. Методы современного естествознания
- 19.1. Системный метод исследования
- 19.2. Кибернетика - наука о сложных системах
- 19.3. Методы математического моделирования
- 19.4. Математическое моделирование в экологии
- Глава 20. Самоорганизация в природе
- 20.1. Парадигма самоорганизации
- 20.2. Синергетика
- 20.3. Особенности эволюции неравновесных систем
- 20.4. Самоорганизация - источник и основа эволюции
- 20.5. Самоорганизация в различных видах эволюции
- Глава 21. Современное естествознание и будущее науки
- 21.1. Особенности современного этапа развития науки
- 21.2. Естествознание и мировоззрение
- 21.5. Общие закономерности современного естествознания
- 21.6. Современная естественно-научная картина мира и Человек
- 21.7. Особенности в развитии современной науки
- Литература
- 140010, Г. Люберцы Московской обл., Октябрьский пр-т, 403. Тел.: 554-21-86