logo

2. Об особом смысле понятий «элементарность», «простое—сложное», «деление», «состоит из»

Один из основателей квантовой физики В. Гейзенберг предупреждал: «Мы не можем избежать употребления языка, тесно связанного с традиционной философией. Мы спрашиваем: "Из чего состоит протон? Делим или неделим электрон? Сложной или простой частицей является фотон?" Однако это неверно поставленные вопросы, ибо слова "делить" или "состоять" в этой связи в значительной мере утрачивают свой смысл.

Нашей задачей должно быть приспособление нашего мышления и нашего языка, то есть нашей научной философии, к новой ситуации, созданной данными эксперимента... Неверно поставленные вопросы и неправильные наглядные представления автоматически просачиваются в физику частиц и уводят научные исследования в сторону от реальной природы".

Утверждение «система состоит из элементов» всегда означало, что эта система представляет собой объект, состоящий из частей, меньших по величине или по массе, но сохраняющих внутри этой системы определенную индивидуальность, самостоятельность (конечно, ограниченную взаимодействием этих частей в рамках включающей их большей системы). К субъядерным частицам такое понимание неприменимо. Здесь следует говорить не о том, что одни частицы состоят из других, а о том, что они способны превращаться друг в друга, порождать друг друга в различных процессах взаимодействия. Протон, например, можно получить в результате столкновения нейтрона и π (пи)-мезона или λ (лямбда)-гиперона и К-мезона, но это не значит, что в структуру всех этих частиц входит протон, что они «состоят из» протонов.

Даже в тех случаях, когда происходит распад частицы, нельзя говорить, что конечные частицы более элементарны, чем распавшаяся, что конечные частицы входили в состав исходной. Это было бы верно, если бы энергия связи (так называемый дефект массы) была значительно меньше масс участвующих в реакции частиц, а частицы-компоненты не теряли бы своей индивидуальности внутри образуемого ими целого. В случае субъядерных частиц дефект массы всегда оказывается больше массы одной или даже нескольких частиц-компонент, а при квантовых (так называемых виртуальных) распадах значительно превосходит массу исходной, «материнской» частицы. Так, масса виртуальных частиц, образующихся при диссоциации π-мезона на пару протон+нейтрон, более чем на порядок превышает массу самого π-мезона. В этом отношении π-мезон радикально отличается, например, от дейтрона (ядра атома тяжелого водорода), дефект масс которого составляет всего лишь около 0,001 его массы; поэтому дейтрон действительно можно считать состоящим из протона и нейтрона, потому что они остаются такими же, как и в свободном состоянии. А вот частицы-компоненты внутри π-мезона почти «растворяются» в энергии их взаимодействия.

Поскольку субъядерные микрочастицы не делятся на простейшие в обычном геометрическом смысле, они должны считаться действительно элементарными частицами. Но вместе с тем они обладают пространственной протяженностью и своеобразной внутренней структурой. Поэтому нельзя абсолютизировать, преувеличивать элементарность микрочастиц. Образ пространственно-структурной и в то же время элементарной по своим свойствам частицы стал фактически общепринятым после экспериментального обнаружения в середине 50-х годов XX в. американским физиком-экспериментатором Р. Хофштадтером пространственной «размазки» электрического заряда и магнитного момента протона.

Свободная, невзаимодействующая микрочастица — это всего лишь математическая абстракция. Реальные физические частицы всегда взаимодействуют с вакуумными полями, испуская и поглощая виртуальные частицы. Вследствие этого вокруг каждой частицы образуется «облако» виртуальных частиц. И чем меньше масса испускаемых частиц, тем больше размеры образуемого ими «облака». Продолжительность отдельных актов виртуальной диссоциации частицы (ее «миганий») очень мала: при испускании π-мезонов она около 5·10-24 с, а для других частиц — еще меньше. Но благодаря многократным их повторениям возникает постоянная, усредненная структура -«размазка» электрического заряда, магнитного момента, массы, которая становится все более плотной к центру частицы. В этом смысле говорят, что элементарная частица состоит из плотного центрального ядра — керна и рыхлой периферической оболочки. Но в отличие от атома, где пространственные размеры отдельных частей — ядра и электронной оболочки -различаются на 5 порядков (10-13 и 10-8 см), в нуклонах отсутствуют резко обособленные детали, пространственные части структуры здесь почти непрерывно переходят друг в друга.