72. Действие ионизирующего излучения на вещество.
Действие ионизирующего излучения на вещество специфично для каждого вида излучения и представляет собой первичные эффекты излучения.
-
γ-излучение.
-
Фотоэффект
-
Некогерентное рассеяние. Эффект Комптона. Рассеяние с изменением длины волны. Энергия расходуется на ионизацию, отрыв электрона от атома и сообщение ему кинетической энергии. При этом происходит увеличение длины волны и распространение её в веществе.
-
Образование электрон-позитронных пар и вторичного β-излучения.
-
Фотоядерная реакция. Выбивание нуклона из ядра с образованием лёгких изотопов.
-
Рентгеновское излучение
-
Фотоэффект. Ионизация или возбуждение атомов при достаточной частоте излучения.
-
Когерентное рассеяние
-
Некогерентное рассеяние. Эффект Комптона.
-
α-излучение
-
Ионизация или возбуждение атомов, зависящее от энергии излучения
-
Захват электронов вещества и превращение в атом гелия
-
Упругое взаимодействие с ядрами
-
Рассеяние
-
β-излучение
-
Ионизация или возбуждение атомов
-
Возникновение тормозного рентгеновского излучения
-
Аннигиляция с позитронами с образованием γ-излучения.
-
Нейтронное излучение
-
Упругое рассеяние
-
Неупругое рассеяние с передачей кинетической энергии ядру
-
Радиационный захват ядром атома с образованием тяжёлого изотопа.
73. Действие ионизирующего излучения на биологические макромолекулы. Этапы радиационного повреждения макромолекул. Понятие о прямом и непрямом действии ионизирующего излучения. Характеристика прямого действия ионизирующего излучения.
Вторичные эффекты ионизирующего излучения проявляются на уровне макромолекул. Основные вторичные эффекты это:
-
Увеличение скорости теплового молекулярного движения.
-
Характеристическое рентгеновское излучение. При выбивании электронов с внутренних энергетических уровней происходит заполнение этих уровней с внешних энергетических уровней, что сопровождается испусканием рентгеновского излучения.
-
Люминесценция – свечение вследствие перехода электронов с возбуждённых уровней на основные.
-
Химические реакции, обусловленные переходом атомов в возбуждённое состояние с преодолением активационных барьеров реакций.
Действие ионизирующего излучение проявляется в несколько этапов.
-
Физическая стадия.
Энергия излучения передаётся веществу, в нём возникают ионизированные и возбуждённые молекулы, неравномерно распределённые в объёме вещества. Эти эффекты проявляются в первые 10-16-10-13с.
-
Физико-химическая стадия.
Эта стадия представлена различными реакциями, приводящими к перераспределению энергии между молекулами. В результате образуются активные молекулярные элементы: ионы, радикалы, сольватированные электроны. 10-13-10-6с.
-
Химическая стадия.
Радикалы взаимодействуют, образуя повреждения разного рода, что приводит к инактивации или нарушению функций макромолекул. 10-6-10-3с.
Различают два механизма радиационного повреждения макромолекул:
Прямой: Когда инактивированными оказываются молекулы непосредственно поглотившие энергию излучения.
Непрямой: Когда молекулы инактивируются в результате взаимодействия с активными реакционноспособными продуктами радиационного воздействия.
Прямое действие ионизирующего излучения исследуют при облучении сухих очищенных препаратов макромолекул. Прямое действие на ДНК выражается в одноцепочечных и двухцепочечных разрывах, межмолекулярных поперечных сшивках нуклеотидов и образовании разветвлённых цепей ДНК. Прямое действие на белки связано с изменением аминокислотного состава, нарушением третичной структуры, с разрывами АК цепей, разрывами дисульфидных связей, агрегацией молекул. Инактивация белка происходит при повреждении только определённых его групп, но его инактивация происходит даже при поглощении одного кванта излучения молекулой. Этот эффект связан с миграцией энергии в белках от места поглощения к месту проявления эффекта.
74. Действие ионизирующего излучения на биологические макромолекулы. Этапы радиационного повреждения макромолекул. Понятие о прямом и непрямом действии ионизирующего излучения. Характеристика непрямого действия ионизирующего излучения.
Вторичные эффекты ионизирующего излучения проявляются на уровне макромолекул. Основные вторичные эффекты это:
Увеличение скорости теплового молекулярного движения.
Характеристическое рентгеновское излучение. При выбивании электронов с внутренних энергетических уровней происходит заполнение этих уровней с внешних энергетических уровней, что сопровождается испусканием рентгеновского излучения.
Люминесценция – свечение вследствие перехода электронов с возбуждённых уровней на основные.
Химические реакции, обусловленные переходом атомов в возбуждённое состояние с преодолением активационных барьеров реакций.
Действие ионизирующего излучение проявляется в несколько этапов.
-
Физическая стадия.
Энергия излучения передаётся веществу, в нём возникают ионизированные и возбуждённые молекулы, неравномерно распределённые в объёме вещества. Эти эффекты проявляются в первые 10-16-10-13с.
-
Физико-химическая стадия.
Эта стадия представлена различными реакциями, приводящими к перераспределению энергии между молекулами. В результате образуются активные молекулярные элементы: ионы, радикалы, сольватированные электроны. 10-13-10-6с.
-
Химическая стадия.
Радикалы взаимодействуют, образуя повреждения разного рода, что приводит к инактивации или нарушению функций макромолекул. 10-6-10-3с.
Различают два механизма радиационного повреждения макромолекул:
Прямой: Когда инактивированными оказываются молекулы непосредственно поглотившие энергию излучения.
Непрямой: Когда молекулы инактивируются в результате взаимодействия с активными реакционноспособными продуктами радиационного воздействия.
Непрямое действие при облучении растворов биологических веществ. При этом непрямой эффект излучения проявляется значительно сильнее, чем прямой. Радиочувствительность при разбавлении возрастает в 100 раз. Повреждение органических молекул в растворе в большой мере связано с продуктами радиолиза воды. Поскольку в растворе молекул воды значительно больше, чем растворённых веществ, вероятность поглощения излучения ими значительно больше.
В процессе прохождения частицы через воду вдоль её пути образуются возбуждённые производные воды: радикал протона, гидроксирадикал, сольватированные электроны, ион гидроксония. Часть образующихся радикалов рекомбинируют с образованием нейтральных продуктов или перекиси, но часть радикалов может взаимодействовать с растворёнными органическими молекулами. В результате образуются свободные органические радикалы, которые могут вступать в дальнейшие реакции, часто имеющие цепной характер.
- Биофизика
- 1. Биофизика как наука. Предмет, задачи и объект исследования биофизики. Философские проблемы биофизики.
- 5. Химическая реакция с обратной связью. Построение простейшей математической модели. Определение координат особых точек, их типа и степени устойчивости.
- 6. Модель "Хищник – Жертва". Определение координат особых точек, их типа и степени устойчивости.
- 7. Мультистационарность. Понятие о биологических триггерах. Способы переключения в триггерных системах. Понятие о бифуркациях.
- 8. Автоколебательные процессы в биологических системах. Их свойства и условия возникновения.
- 10. Динамический хаос. Его характеристика. Динамический хаос и самоорганизующиеся системы. Значение динамического хаоса для самоорганизующихся систем.
- 11. Первый и второй законы термодинамики. Их формулировка и физический смысл. Обратимые и необратимые процессы.
- 12. Понятие термодинамического равновесия. Равновесные и неравновесные системы. Критерии эволюции системы к состоянию термодинамического равновесия.
- 13. Принципы экстремумов в термодинамике. Их сущность и значение.
- 14. Энтропия. Её физический смысл с позиций термодинамики и молекулярной физики. Связь энтропии и информации.
- 15. Изменение энтропии в открытых системах. Определение скорости продукции энтропии в открытых системах.
- 16. Понятие термодинамического равновесия. Общие свойства систем вблизи термодинамического равновесия.
- 17. Сравнительная характеристика стационарного состояния и термодинамического равновесия. Критерии эволюции системы к стационарному состоянию. Теорема Пригожина.
- 19. Скорость продуцирования энтропии вблизи стационарного состояния системы. Теорема Пригожина.
- 20. Общие свойства систем вдали от термодинамического равновесия.
- 21. Диссипативные структуры: их классификация. Условия возникновения диссипативных структур. Характеристика отдельных видов диссипативных структур.
- 22. Информация в биологии.
- 23. Феномен белка в биофизике. Уникальность строения и свойств белка.
- 24. Элементарные взаимодействия в белках. Их виды. Ковалентные, координационные связи и силы Ван-дер-Ваальса. Их характеристика.
- 25. Элементарные взаимодействия в белках. Водородные связи и гидрофобные взаимодействия. Их характеристика.
- 26. Первичная структура белка. Пептидная связь и её свойства. Пространственная конфигурация полипептидной цепи. Факторы её определяющие. Карты Рамачандрана.
- 27. Вторичная структура белка. Типы вторичной структуры, их особенности. Образование вторичной структуры белка.
- 28. Третичная структура белка. Классификация белков по типу третичной структуры.
- 29. Физическая теория фазовых переходов. Понятие фазового перехода. Типы фазовых переходов. Образование и разрушение пространственной структуры белка с позиции теории фазовых переходов.
- 30. Денатурация белка. Её термодинамическая характеристика. Этапы денатурации белка. Механизмы денатурации. Способы денатурации.
- 32. Механизмы ферментативного катализа на примере работы сериновых протеаз.
- 33. Конформационные изменения в белке. Их значение для работы белка.
- 34. Внутримолекулярная динамика белка. Изменения конформации гемоглобина при оксигенации. Роль аллостерических регуляторов.
- 35. Прогнозирование и дизайн белковых структур.
- 37. Законы поглощения электромагнитного излучения веществом. Спектрофотометрия, её физические основы.
- 38. Спектроскопические методы в биофизике. Их физические основы, задачи спектроскопии, классификация спектроскопических методов.
- 39. Метод электронного парамагнитного резонанса. Физические принципы и применение в изучении биополимеров.
- 40. Метод ядерного магнитного резонанса. Физические принципы и применение в изучении биополимеров.
- 41. Метод мессбауэровской спектроскопии. Его физические принципы и использование в изучении биополимеров.
- 42. Использование поляризованного света в изучении биополимеров.
- 43. Рентгеноструктурный анализ. Его физические принципы и использование при изучении биополимеров.
- 45. Фазовые переходы в биологических мембранах. Их характеристика и функциональное значение.
- 46. Свободнорадикальное окисление в биологических мембранах. Характеристика процесса и его значение для клетки.
- 47. Транспорт веществ через мембраны. Термодинамическая характеристика процесса. Ионное равновесие в мембранных системах. Уравнение Нернста для равновесного потенциала.
- 48. Электродиффузионная теория пассивного транспорта. Уравнение Нернста-Планка. Его вывод и решение.
- 49. Пассивный транспорт неполярных веществ. Уравнение Нернста-Планка для транспорта неполярных веществ. Закон Фика. Механизмы транспорта неполярных соединений.
- 50. Уравнение Гольдмана. Его вывод и физический смысл. Понятие проницаемости и проводимости мембраны.
- 51. Классификация транспорта веществ через мембраны. Термодинамическая и биологическая характеристика отдельных видов транспорта.
- 52. Ионный транспорт через каналы. Основные свойства ионных каналов. Общий план строения ионного канала. Физические принципы работы ионного канала.
- 53. Регуляция работы ионных каналов. Механизмы регуляции. Фармакологическая блокада ионных каналов.
- 54. Облегчённая диффузия. Характеристика процесса.
- 55. Мембранный потенциал покоя. Его механизмы. Расчёт величины мембранного потенциала.
- 56. Мембранный потенциал действия. Механизмы и общие свойства мембранного потенциала действия. Расчёт величины мембранного потенциала действия.
- 57. Модель Ходжкина-Хаксли. Её характеристика и значение для биофизики клетки.
- 58. Молекулярные механизмы сопряжения окисления и фосфорилирования.
- 59. Молекулярные механизмы активного транспорта.
- 60. Молекулярная организация сократительного аппарата миофибрилл.
- 61. Мостиковая гипотеза мышечного сокращения. Рабочий цикл мостика, его этапы. Механизмы механохимического сопряжения в сократительном аппарате.
- 62. Механика и энергетика мышечного сокращения.
- 63. Миграция энергии и электронов в биологических структурах.
- 64. Фотобиологические процессы. Их значение для живой материи. Классификация фотобиологических процессов. Общие закономерности фотобиологических процессов.
- 65. Фотопревращения бактериородопсина. Их характеристика.
- 66. Фотоинформационные и фоторегуляционные процессы.
- 67. Фотодеструктивные процессы. Их общая характеристика. Фотосенсибилизация, её виды и механизмы. Основные типы фотодеструктивных изменений в биологических молекулах.
- 69. Фотодеструктивные процессы. Действие ультрафиолетового излучения на нуклеиновые кислоты. Механизмы фотореактивации и фотозащиты.
- 70. Фотодеструктивные процессы. Их общая характеристика. Действие ультрафиолетового излучения на белки.
- 71. Виды ионизирующих излучений. Их физическая характеристика. Понятие дозы ионизирующего излучения. Виды дозиметрических показателей.
- 72. Действие ионизирующего излучения на вещество.
- 75. Действие ионизирующего излучения на биологические макромолекулы. Механизмы радиационного повреждения макромолекул. Модификация радиочувствительности.
- 76. Действие ионизирующего излучения на клеточном уровне.