logo
652794_DC52D_konspekt_lekciy_dlya_ekzamena_po_k

62. Механика и энергетика мышечного сокращения.

Механика мышечного сокращения изучалась Хиллом. В процессе сокращения мышца может работать в двух режимах: Изометрический режим – мышца развивает силу при постоянной длине, Изотонический режим – мышца укорачивается при постоянной нагрузке. При изотоническом сокращении укорочение убывает с ростом груза, и его максимум достигается тем раньше, чем больше этот груз. Развитие изометрического напряжения следует той же зависимости.

Хилл эмпирически установил зависимость скорости изотонического сокращения от нагрузки.

Эта зависимость имеет гиперболическую форму и справедлива при постоянных скоростях сокращения и при физиологических длинах мышцы. P0 зависит от длины саркомера в мышечном волокне и максимальна в области 1,7-2,5мкм, когда существует возможность образования максимального числа мостиков между актином и миозином. Работа, производимая мышцей при сокращении, будет равна, по уравнению Хилла.

Эта функция имеет колоколообразную форму от 0 до P0 с максимумом при P≈0,31 P0, что соответствует оптимальной нагрузке мышцы.

Одновременно с совершением работы, мышца выделяет тепло. Тепло выделяется как при изотоническом сокращении, так и при изометрическом напряжении и при растяжении мышцы под действием внешней силы. На раннем этапе сокращения выделяется теплота активации Qa, связанная с выделением Ca2+ в саркоплазму, а по мере сокращения мышцы выделяется теплота сокращения Qc в результате взаимодействия тонких и толстых нитей. Общее изменение энергии в системе таким образом равно:

Эффект Фенна: полная энергия, выделяемая мышцей при одиночном сокращении больше, чем при изометрическом сокращении. Во время сокращения происходит выделение экстратеплоты за счёт укорочения мышцы, скорость её выделения пропорциональна скорости укорочения.

Механическая эффективность мышцы определяется как отношение работы к израсходованной энергии.

Эффективность может достигать 45% у мышц лягушки и 75% для мышц человека.