2. Основные этапы развития человека разумного
За последние 40-50 лет в антропологии накопились данные, позволяющие не только ответить на многие вопросы, связанные с антропогенезом, но и поставить ряд новых проблем.
Находки, сделанные главным образом в Южной Африке, позволяют представить облик существ, находившихся в основании развития линии приматов, приведшей к возникновению рода Homo. Их стали называть австралопитеками (<лат. australis - южный, pithecus – обезьяна).
Австралопитеки – сравнительно крупные, около 20-65 кг массой, 100-150 см ростом ходили на коротких ногах при выпрямленном положении тела, масса мозга – 450-550 г. Это были обитатели открытых пространств. Свободные руки служили для нападения и защиты. Австралопитеки широко использовали как ударные орудия палки, камни, кости копытных и т.д. Судя по строению зубов, эти животные были всеядными. Одновременно существовало несколько разных видов австралопитеков и одним из наиболее вероятных «кандидатов» в непосредственные предки ствола рода Homo является так называемый афарский австралопитек, остатки которого найдены в Эфиопии, в слоях возраста около 3,5 млн. лет. Специализированные австралопитеки обитали уже вместе с ранними формами человека и могли быть его жертвами. В целом австралопитеки намного ближе к человеку, чем современные человекообразные обезьяны.
Род Homo, появившийся на Земле, продолжал претерпевать эволюционные изменения. В настоящее время известны несколько переходных форм.
1. Человек умелый (Homo habilis). – 2 млн. лет назад. 2. Архантропы (Homo erectus) – 2 млн. лет назад – 140 тыс. лет назад. 3. Палеоантропы (Homo Neanderthalensis, неандертальцы) – от 250 до 40-25 тыс. лет назад.
Последние исследования показывают, что неандертальцы – неоднородная группа. Интересно, что более древние по возрасту находки неандертальцев морфологически (т.е. по форме) более прогрессивны, чем более поздние формы. Ранние неандертальцы с менее мощным физическим развитием, по-видимому, впоследствии дали начало ветви современного человека – кроманьонца. Поздние же неандертальцы, более крупные и более развитой мускулатурой, оказались тупиковой ветвью и были вытеснены Человеком разумным – Homo sapiens – видом, к которому принадлежим и мы.
Возможные формы филогенеза человекообразных форм представлена на рис. 1. Важно иметь в виду, что это - весьма приближенные схемы. Дело в том, что Современные палеонтологические данные опровергают прежние представления о «прямолинейности» эволюционного древа человека, в которых все, что существовало рядом с «основным» стволом, провозглашается «боковой» и «тупиковой» ветвью. Такая прямолинейность природе не свойственна. Появлению нового вида предшествует «лихорадка эволюционной активности». Иными словами, возникает множество разновидностей, слегка, а потом и не так уж слегка отличающихся от типичной прежней. Многие из этих разновидностей продолжают сосуществовать и далее, постепенно все более расходясь, образуя новые виды и продолжая тем же путем эволюционировать и дальше. И никто из них не «выше» и не «ниже» других, нет среди них «главного ствола» и «боковых ветвей». Поэтому нельзя воображать себе эволюцию как ствол, неукротимо тянущийся к некой вершине, — эволюция больше похожа на гигантский кустарник, покрывающий огромное поле и состоящий из множества более мелких, но тоже очень сложных кустов [4].
По отношению к человеку это означает, что могли одновременно сосуществовать многие веточки соответствующего эволюционного куста и ученым еще предстоит их отыскать. Всякая же попытка провести через известные ископаемые находки, как более, так и менее «прогрессивные», некую «прямую», которая изображала бы эволюцию древнего человека, становится попросту невозможной. Один из палеоантропологов хорошо сказал по этому поводу: «Пока в нашем распоряжении было мало черепов, такую прямую можно было легко провести. Но чем больше накапливается «точек», тем труднее оказывается это сделать». Это распространенное правило: чем меньше фактов существует (или принимается во внимание), тем легче выстроить стройную концепцию, теорию или гипотезу. Больше фактов, конечно, лучше, но зачастую накопление новых фактов заставляет пересматривать существующие теории.
Последние палеонтологические открытия свидетельствуют о том, что на протяжении всей человеческой эволюции, во все ее периоды, от времен жизни нашего общего с приматами предка и до самых поздних времен, в каждую отдельную эпоху одновременно сосуществовали как минимум два-три очень разных вида и даже разных семейства гоминидов («куст»), и проводить прямую линию через кого-то из них к человеку пока еще рано: неизвестно, через какие точки ее проводить. Это справедливо и по отношению к эволюции других млекопитающих. Крупнейший палеантрополог современности доктор М. Лики сказал по этому поводу: «В разнообразии гоминидных останков нет ничего удивительного, потому что ранние гоминиды, ответвляясь от общего предка человека и приматов и двигаясь на двух ногах, имели возможность перемещаться в разные регионы Африки и там развиваться в новые виды».
Культурные модели и выводы антропологии. В рассмотренном изменении парадигм антропологии можно усмотреть свидетельство того, что антропология, как и вся наука в целом рассматривает свои объекты и делает из этого свои выводы под влиянием господствующих культурных моделей.
Действительно, прежнее представление о линейной эволюции человечества и всех прочих видов, держалось до тех пор, пока господствовали типичные для XIX века представления об экономическом, социальном и моральном прогрессе, растущем, как дерево, в одном направлении, — ко все лучшему и лучшему. Теперь на смену этим представлениям пришли идеи постмодернизма и мультикультурализма, провозглашающие равенство всех культур при полном отсутствии понятия «прогресса». Антропологи тоже переняли взгляд на древнюю историю человечества как на беспорядочную, хаотическую груду равноценных видов, никому из которых нельзя отдать предпочтение как единственному предку человечества; идея «многообразия равных» и «отсутствия порядка и направления» сменила идею «прогресса» в качестве бессознательной установки при интерпретации новых и старых данных. Такая трактовка развития науки в общем виде сводится к утверждению, что так называемая научная истина сама по себе не существует вообще, а есть «социальные конструкты», то есть субъективные интерпретации, которые, в свою очередь, определяются влиянием на ученых социальных и культурных стереотипов среды и эпохи. (Подобный подход впервые выдвинул Томас Кун в своей книге «Структура научных революций»).
В то же время сложный, нелинейный характер эволюции человека как вида носит объективный характер и не зависит от культурных стереотипов. Разнообразие ранних гоминидов - предков человека связано с тем, что приобретя прямохождение, далекие предки человека неминуемо должны были рассеяться в поисках новых мест обитания и новых источников пищи и тем самым приобрели шансы на разнообразие благодаря необходимости адаптироваться к новым условиям и использованию для этого случайных мутаций. Изменение наших представлений о происхождении человека говорит о том, что научная картина эволюции стала сложнее, но зато и намного реальнее [5].
Согласно разрабатываемой в настоящее время комплексной гипотезе широкого моноцентризма, человек современного типа возник где-то в Восточном Средиземноморье, где, по-видимому, был совершен последний шаг на пути к современному виду неоантропов (Homo Sapiens). Фигура человека стала более стройной, увеличился рост. Величина головного мозга существенно не изменилась, однако произошли значительные перемены в его строении: большое развитие получили лобные доли и зоны, связанные с развитием речи и сложной, конструктивной деятельностью. После этого началось интенсивное и широкое расселение неоантропов по разным континентам. Не исключено, что при этом люди современного типа могли смешиваться с неандертальцами. Это, вероятно, было не простое вытеснение или уничтожение, а различные формы слияния, при которых происходило генетическое скрещивание пришлых и местных людей, а с точки зрения развития культуры начинала преобладать новая, прогрессивная культура кроманьонцев.
В настоящее время картина развития вида Homo Sapiens развертывается на основе палеонтологических данных с применением современных молекулярно-генетических методов. Тщательный анализ показывает, что несколько десятков тысяч лет назад численность исходной популяции Homo Sapiens была не более 5000 размножающихся пар. Затем, по-видимому, эта популяция разделилась на несколько групп, причем каждая из вновь образованных популяций в свое время проходила через так называемой «бутылочное горлышко» – период исключительно малой численности, когда число размножающихся пар могло насчитывать всего несколько десятков [2].
К началу документа
- Концепции современного естествознания Лекция 1. Тема: Введение в дисциплину.
- 1. Естествознание. Определение и содержание понятия. Задачи естествознания
- 2. Взаимосвязь естественных наук. Редукционизм и холизм.
- 3. Фундаментальные и прикладные науки. Технологии
- 4. Тезис о двух культурах.
- Лекция 2. История развития естествознания
- 1. Этапы (стадии) познания природы
- 2. Глобальные естественнонаучные революции
- Роль космологии в естественнонаучных революциях
- Концепции современного естествознания Лекция 3. Методология научных исследований
- 1. Понятие методологии и метода
- 2. Методы научного познания 2.1. Общенаучные методы
- 2. Методы эмпирического и теоретического познания
- 3. Формы научного знания
- 4. Процесс научного познания
- 5. Критерии истинности научного знания
- Лекция 4. Механика и методология Ньютона
- 1. Движение - одна из основных проблем естествознания
- 2. Механика Галилея как основа механики Ньютона
- 3. Механика Ньютона
- 4. Ньютоновская методология исследований
- 5. Оптика Ньютона – предвосхищение современной концепции о двойственной природе света
- Лекция 5. Механическая картина мира (мкм)
- 1. Понятие научной картины мира
- 2. Формирование механической картины мира (мкм)
- 3. Основные понятия и законы мкм
- 4. Основные принципы мкм
- Лекция 6. Термодинамическая картина мира (I)
- 1. Промышленная революция и развитие теории теплоты
- 2. Работа в механике. Закон сохранения и превращения энергии в механике
- 3. Теплородная и кинетическая теория теплоты
- 4. Термодинамика и статистическая физика
- Лекция 7. Термодинамическая картина мира (II). Второе начало термодинамики
- 1. Идеальный цикл Карно.
- 2. Энтропия. Термодинамическая трактовка.
- 3. Энтропия. Вероятностная трактовка.
- Лекция 8. Термодинамическая картина мира (III). Стрела времени
- 1. Вероятность как атрибут больших систем.
- 2. Стрела времени
- 3. Проблема тепловой смерти Вселенной и флуктуационная гипотеза Больцмана.
- Лекция 9. Электромагнитная картина мира (эмкм)
- 1. Основные экспериментальные законы электромагнетизма.
- 2. Теория электромагнитного поля д. Максвелла
- 3. Электронная теория Лоренца.
- Лекция 10. Специальная теория относительности. Основные идеи общей теории относительности
- 1. Проблема равноправия инерциальных систем отсчета и мирового эфира.
- 2. Постулаты и основные следствия сто
- 3. Относительность промежутка времени:
- 3. Основные идеи общей теории относительности.
- 1. Свойства пространства-времени зависят от движущейся материи.
- 2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.
- 3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений.
- 4. Основные понятия и принципы эмкм
- Лекция 11. Квантово-полевая картина мира (кпкм)
- 1. Формирование идеи квантования физических величин
- 2. Корпускулярно-волновой дуализм света и вещества.
- 3. Соотношения неопределенностей Гейзенберга
- 4. Основные понятия и принципы кпкм
- Лекция 12. Многообразие и единство мира
- 1. Структурные уровни материи
- 2. Элементарные частицы, фундаментальные частицы и частицы – переносчики фундаментальных взаимодействий
- 3. Атомное ядро
- 4. Молекулы и реакционная способность веществ.
- 5. Макроскопические тела. Фазовые переходы.
- Лекция 13. Мегамир, основные космологические и космогонические представления (I)
- 1. Основные представления о мегамире
- 2. Солнечная система
- 3. Гипотезы о происхождении планет Солнечной системы
- Лекция 14. Мегамир. Основные космогонические представления (II)
- 1. Звезды, их характеристики, источники энергии
- 2. Галактики и метагалактики
- 3. Структура и геометрия Вселенной
- Лекция 15. Мегамир, основные космогонические представления (III)
- 1. Эволюция звезд
- 2. Возникновение Вселенной. Теория Большого Взрыва
- 3. Антропный принцип.
- Лекция 16. Химическая эволюция Земли
- 1. Химическая эволюция Земли
- 2. Понятие самоорганизации в химии.
- 3. Общая теория химической эволюции и биогенеза
- Лекция 17. Специфика живого
- 1. Предмет изучения, задачи и методы биологии
- 2. Специфика и системность живого
- 3.Уровни организации живых систем
- Лекция 18. Термодинамика живых систем. Жизнь как информационный процесс.
- 1. Термодинамика живых систем
- 2.Управление и регулирование в живых системах 2.1 Задачи управления и регулирования
- 2.2 Информационные связи внутри организма
- 2.3 Цели и специфика управления в живых системах
- Лекция 19. Концепция эволюции в биологии
- 1. Эволюционная теория Дарвина – Уоллеса
- 2 Современная (синтетическая) теория эволюции
- Лекция 20. Человек
- 1. Место человека в системе животного мира и антропогенез
- 2. Основные этапы развития человека разумного
- 3. Дифференциация на расы. Расы и этносы
- 4. Эколого-эволюционные возможности человека
- 5. Биосоциальные основы поведения
- Лекция 21. Биосфера и цивилизация
- 1. Биосфера и место человека в биосфере
- 2. Антропогенный фактор и глобальные экологические проблемы
- 3. Негэнтропийный взгляд на экологические проблемы
- Лекция 22. Основные концепции и перспективы биотехнологии
- 1. Микробиология
- 2. Инженерная энзимология
- 3. Перспективы биотехнологии и проблемы биологической безопасности. Биоэтика
- 3.1. Генная и клеточная инженерия
- 3.2. Евгеника
- 3.3. Клонирование
- 3.4. Расшифровка генома человека
- 3.5. Биоэтика
- Контрольные вопросы
- Литература
- Лекция 23. Принципы симметрии в научной картине мира
- 1. Понятие симметрии
- 2. Симметрия пространства – времени и законы сохранения
- 3. Симметрия и асимметрия живого
- 4. Нарушение симметрии как источник самоорганизации
- Лекция 24. Эволюционно-синергетическая парадигма
- 1. Концепция самоорганизации в науке
- 2. Основные понятия и принципы синергетики
- Лекция 25. Эволюционно-синергетическая парадигма (продолжение)
- 1. Примеры самоорганизации в неживой природе
- 2. Самоорганизация в социальных системах
- Лекция 26. Естествознание в мировой культуре
- 1. Проблема двух культур
- 2. Перспективы интеграции знаний в науке будущего
- Рабочая программа по учебной дисциплине "Концепции современного естествознания" для направлений 521500, 521600, 522000, специальностей 060300,060400,060800,0,6100, 061400
- 1. Цели и задачи курса
- 2. Требования к знаниям
- 3. Структура и объем курса
- 4. Содержание дисциплины
- Тема 1. Две культуры как отражение двух типов мышления
- Тема 2. Физика глазами гуманитария. Физические картины мира.
- Тема 3. Физика как целое.
- Тема 4. Жизнь. Биологическая картина мира.
- Тема 5. Биосфера и цивилизация
- Тема 6. Основные концепции и перспективы биологии
- Тема 7. Эволюционно-синергетическая парадигма
- 5. Перечень лабораторных работ (по 4 час.)
- 6. Перечень практических и семинарских занятий
- 7. Расчет часов по темам (для 522000, 061400)
- 8. Методические рекомендации
- 9. Литература
- 4.1 Основная
- 4.2 Дополнительная
- Лабораторная работа №1. Фрактальные структуры в окружающем мире
- 1. Теоретический материал
- 1.1 Фрактальные структуры
- 1.2 Фрактальная размерность
- 1.3. Фрактальные кластеры
- 2. Порядок выполнения работы
- Наверх Лабораторная работа №2. Дискретные модели динамических систем. Клеточные автоматы
- 1. Теоретический материал
- 1.1. Представление сложных динамических процессов в виде дискретных систем
- 1.2. Моделирование процесса роста с помощью клеточного автомата
- 2. Выполнение лабораторной работы