logo
Концепции лекции

3. Соотношения неопределенностей Гейзенберга

Двойственная природа микрочастиц поставила науку перед вопросом о границах применимости понятий классической физики в микромире. В классической механике всякая частица движется по определенной траектории и всегда имеет вполне определенные (точные) значения координаты, импульса, энергии. По-другому обстоит дело с микрочастицей. Микрочастица, обладая волновыми свойствами, не имеет траектории, а значит, не может иметь одновременно определенных (точных) значений координаты и импульса. Другими словами, мы можем говорить о значениях координаты и импульса микрочастицы только с некоторой степенью приближения. Меру этой неопределенности (неточности) в значениях координаты и импульса, энергии и времени нашел в 1927 г. В Гейзенберг. Он показал, что эти неопределенности (неточности) удовлетворяют следующим соотношениям:

DX×DPX³h; DY×DPY³h; DZ×DPZ³h; DW×Dt³h.

Эти неравенства называются соотношениями неопределенностей Гейзенберга.

Таким образом, если мы знаем положение X импульс Р микрочастицы (например, электрона в атоме) с погрешностями DX и DPX, то эта погрешность не может быть меньше, чем h. Этот предел мал, поскольку мала сама h – постоянная Планка, но он существует, и это фундаментальный закон природы. Важно заметить, что эта неопределенность не связана с несовершенством наших приборов. Речь о том, что принципиально нельзя определить одновременно координату и импульс частицы точнее, чем это допускает соотношение неопределенностей. Этого нельзя сделать точно, так же как нельзя превысить скорость света, достичь абсолютного нуля температур, поднять себя за волосы, вернуть вчерашний день.

Из соотношения неопределенностей видно, что с увеличением массы частицы ограничения, накладываемые им уменьшаются. Например, для пылинки m=10-13кг, координата которой получена с точностью до ее размеров, т.е. DX=10-6м, получаем DVX=1,0×10-15 м/с. Эта неопределенность практически не будет сказываться ни при каких скоростях, с которыми может двигаться частица. Для макроскопических тел соотношение неопределенностей не будет вносить никаких ограничений в возможность применить для них понятия координаты и скорости одновременно. Дело в том, что постоянная Планка в этих случаях может рассматриваться пренебрежимо малой. Это приводит к тому, что квантовые свойства изучаемых объектов оказываются несущественными, а представления классической физики – полностью справедливыми. Аналогично при скоростях, намного меньших скорости света, выводы теории относительности совпадают с выводами классической механики.

Таким образом, классическая механика является предельным случаем квантовой механики и релятивистской механики.

Это положение связано с так называемым принципом соответствия, имеющим важное философское и методологическое значение. Принцип соответствия может быть сформулирован следующим образом:

Теории, справедливость которых была экспериментально установлена для определенной группы, с появлением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений, как предельная форма и частный случай новых теорий.

К началу документа