2. Механика Галилея как основа механики Ньютона
Известно, что Евклид строил свою геометрию, вводя вначале постулаты, аксиомы, определения. Подобным же образом действовал Галилей, создавая свою механику. Подобно тому как Евклид устанавливал соотношения в пространстве, Галилей выявлял характер движения тел. Он ввел определения силы, скорости, ускорения, равномерного движения, инерции, понятия средней скорости и среднего ускорения. Скорость он, в частности, определял как отношение пройденного пути к затраченному времени, а силу сопоставлял такому математическому понятию как вектор, т.е. пользовался практически современным научным языком.
Галилей сформулировал четыре аксиомы.
1-я аксиома (Закон инерции). Свободное движение по горизонтальной плоскости происходит с постоянной по величине и направлению скоростью. (Интересно отметить, что это утверждение никак не следует из опыта – ведь на практике мы видим постепенное замедление движения и Галилей использовал принцип идеализации, мысленный эксперимент).
2-я аксиома: свободно падающее тело движется с постоянным ускорением и конечная скорость тела, падающего из состояния покоя , связано с высотой, которая пройдена к этому моменту как V2 = 2gH.
3-я аксиома: свободное падение тел можно рассматривать как движение по наклонной плоскости, а горизонтальной плоскости соответствует закон инерции.
4-я аксиома (принцип относительности) также построена путем мысленных экспериментов, путем абстракции. Галилей доказал, что траектория падающего тела отклоняется от вертикали из-за сопротивления воздуха и в безвоздушном пространстве тело упадет точно над точкой, из которой началось падение. То же происходит при падении тела с мачты движущегося с абсолютно постоянной скоростью корабля, но человеку, стоящему на берегу, траектория его падения представится в виде параболы. Здесь роль корабля сводится к сообщению телу начальной скорости Vо. Действительно, из курса школьной физики нам известно, что траектория вылетающего из пушки снаряда также представляет собой параболу.
В своем знаменитом труде «Диалог о двух главнейших системах мира: птолемеевой и коперниковой» (1632г.) (ранее уже упоминавшемся), Галилей подробно рассматривал принцип относительности. Он рассматривает мысленный опыт на движущемся корабле. («Сотни раз, сидя в своей каюте, я спрашивал себя: движется ли корабль или стоит на месте?»). Так Галилей сформулировал принцип, получивший название Принципа относительности Галилея следующим образом.
Внутри равномерно движущейся (т.н. инерциальной) системы все механические процессы протекают так же, как и внутри покоящейся.
В этой же книге Галилей опроверг аристотелевские представления о движении.
К началу документа
- Концепции современного естествознания Лекция 1. Тема: Введение в дисциплину.
- 1. Естествознание. Определение и содержание понятия. Задачи естествознания
- 2. Взаимосвязь естественных наук. Редукционизм и холизм.
- 3. Фундаментальные и прикладные науки. Технологии
- 4. Тезис о двух культурах.
- Лекция 2. История развития естествознания
- 1. Этапы (стадии) познания природы
- 2. Глобальные естественнонаучные революции
- Роль космологии в естественнонаучных революциях
- Концепции современного естествознания Лекция 3. Методология научных исследований
- 1. Понятие методологии и метода
- 2. Методы научного познания 2.1. Общенаучные методы
- 2. Методы эмпирического и теоретического познания
- 3. Формы научного знания
- 4. Процесс научного познания
- 5. Критерии истинности научного знания
- Лекция 4. Механика и методология Ньютона
- 1. Движение - одна из основных проблем естествознания
- 2. Механика Галилея как основа механики Ньютона
- 3. Механика Ньютона
- 4. Ньютоновская методология исследований
- 5. Оптика Ньютона – предвосхищение современной концепции о двойственной природе света
- Лекция 5. Механическая картина мира (мкм)
- 1. Понятие научной картины мира
- 2. Формирование механической картины мира (мкм)
- 3. Основные понятия и законы мкм
- 4. Основные принципы мкм
- Лекция 6. Термодинамическая картина мира (I)
- 1. Промышленная революция и развитие теории теплоты
- 2. Работа в механике. Закон сохранения и превращения энергии в механике
- 3. Теплородная и кинетическая теория теплоты
- 4. Термодинамика и статистическая физика
- Лекция 7. Термодинамическая картина мира (II). Второе начало термодинамики
- 1. Идеальный цикл Карно.
- 2. Энтропия. Термодинамическая трактовка.
- 3. Энтропия. Вероятностная трактовка.
- Лекция 8. Термодинамическая картина мира (III). Стрела времени
- 1. Вероятность как атрибут больших систем.
- 2. Стрела времени
- 3. Проблема тепловой смерти Вселенной и флуктуационная гипотеза Больцмана.
- Лекция 9. Электромагнитная картина мира (эмкм)
- 1. Основные экспериментальные законы электромагнетизма.
- 2. Теория электромагнитного поля д. Максвелла
- 3. Электронная теория Лоренца.
- Лекция 10. Специальная теория относительности. Основные идеи общей теории относительности
- 1. Проблема равноправия инерциальных систем отсчета и мирового эфира.
- 2. Постулаты и основные следствия сто
- 3. Относительность промежутка времени:
- 3. Основные идеи общей теории относительности.
- 1. Свойства пространства-времени зависят от движущейся материи.
- 2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.
- 3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений.
- 4. Основные понятия и принципы эмкм
- Лекция 11. Квантово-полевая картина мира (кпкм)
- 1. Формирование идеи квантования физических величин
- 2. Корпускулярно-волновой дуализм света и вещества.
- 3. Соотношения неопределенностей Гейзенберга
- 4. Основные понятия и принципы кпкм
- Лекция 12. Многообразие и единство мира
- 1. Структурные уровни материи
- 2. Элементарные частицы, фундаментальные частицы и частицы – переносчики фундаментальных взаимодействий
- 3. Атомное ядро
- 4. Молекулы и реакционная способность веществ.
- 5. Макроскопические тела. Фазовые переходы.
- Лекция 13. Мегамир, основные космологические и космогонические представления (I)
- 1. Основные представления о мегамире
- 2. Солнечная система
- 3. Гипотезы о происхождении планет Солнечной системы
- Лекция 14. Мегамир. Основные космогонические представления (II)
- 1. Звезды, их характеристики, источники энергии
- 2. Галактики и метагалактики
- 3. Структура и геометрия Вселенной
- Лекция 15. Мегамир, основные космогонические представления (III)
- 1. Эволюция звезд
- 2. Возникновение Вселенной. Теория Большого Взрыва
- 3. Антропный принцип.
- Лекция 16. Химическая эволюция Земли
- 1. Химическая эволюция Земли
- 2. Понятие самоорганизации в химии.
- 3. Общая теория химической эволюции и биогенеза
- Лекция 17. Специфика живого
- 1. Предмет изучения, задачи и методы биологии
- 2. Специфика и системность живого
- 3.Уровни организации живых систем
- Лекция 18. Термодинамика живых систем. Жизнь как информационный процесс.
- 1. Термодинамика живых систем
- 2.Управление и регулирование в живых системах 2.1 Задачи управления и регулирования
- 2.2 Информационные связи внутри организма
- 2.3 Цели и специфика управления в живых системах
- Лекция 19. Концепция эволюции в биологии
- 1. Эволюционная теория Дарвина – Уоллеса
- 2 Современная (синтетическая) теория эволюции
- Лекция 20. Человек
- 1. Место человека в системе животного мира и антропогенез
- 2. Основные этапы развития человека разумного
- 3. Дифференциация на расы. Расы и этносы
- 4. Эколого-эволюционные возможности человека
- 5. Биосоциальные основы поведения
- Лекция 21. Биосфера и цивилизация
- 1. Биосфера и место человека в биосфере
- 2. Антропогенный фактор и глобальные экологические проблемы
- 3. Негэнтропийный взгляд на экологические проблемы
- Лекция 22. Основные концепции и перспективы биотехнологии
- 1. Микробиология
- 2. Инженерная энзимология
- 3. Перспективы биотехнологии и проблемы биологической безопасности. Биоэтика
- 3.1. Генная и клеточная инженерия
- 3.2. Евгеника
- 3.3. Клонирование
- 3.4. Расшифровка генома человека
- 3.5. Биоэтика
- Контрольные вопросы
- Литература
- Лекция 23. Принципы симметрии в научной картине мира
- 1. Понятие симметрии
- 2. Симметрия пространства – времени и законы сохранения
- 3. Симметрия и асимметрия живого
- 4. Нарушение симметрии как источник самоорганизации
- Лекция 24. Эволюционно-синергетическая парадигма
- 1. Концепция самоорганизации в науке
- 2. Основные понятия и принципы синергетики
- Лекция 25. Эволюционно-синергетическая парадигма (продолжение)
- 1. Примеры самоорганизации в неживой природе
- 2. Самоорганизация в социальных системах
- Лекция 26. Естествознание в мировой культуре
- 1. Проблема двух культур
- 2. Перспективы интеграции знаний в науке будущего
- Рабочая программа по учебной дисциплине "Концепции современного естествознания" для направлений 521500, 521600, 522000, специальностей 060300,060400,060800,0,6100, 061400
- 1. Цели и задачи курса
- 2. Требования к знаниям
- 3. Структура и объем курса
- 4. Содержание дисциплины
- Тема 1. Две культуры как отражение двух типов мышления
- Тема 2. Физика глазами гуманитария. Физические картины мира.
- Тема 3. Физика как целое.
- Тема 4. Жизнь. Биологическая картина мира.
- Тема 5. Биосфера и цивилизация
- Тема 6. Основные концепции и перспективы биологии
- Тема 7. Эволюционно-синергетическая парадигма
- 5. Перечень лабораторных работ (по 4 час.)
- 6. Перечень практических и семинарских занятий
- 7. Расчет часов по темам (для 522000, 061400)
- 8. Методические рекомендации
- 9. Литература
- 4.1 Основная
- 4.2 Дополнительная
- Лабораторная работа №1. Фрактальные структуры в окружающем мире
- 1. Теоретический материал
- 1.1 Фрактальные структуры
- 1.2 Фрактальная размерность
- 1.3. Фрактальные кластеры
- 2. Порядок выполнения работы
- Наверх Лабораторная работа №2. Дискретные модели динамических систем. Клеточные автоматы
- 1. Теоретический материал
- 1.1. Представление сложных динамических процессов в виде дискретных систем
- 1.2. Моделирование процесса роста с помощью клеточного автомата
- 2. Выполнение лабораторной работы