logo
Bilety_1

25) Дигибридное скрещивание. Третий закон Менделя.

Скрещивание, в котором участвуют две пары аллелей, генов, расположенных в разных, негомологичных хромосомах, называется дигибридным. При дигибридном скрещивании Г. Мендель изучал наследование двух пар признаков, за которые отвечают пары аллелей, лежащих (как выяснилось значительно позднее) в разных парах гомологичных хромосом.

Если в дигибридном скрещивании разные пары аллельных генов находятся в разных парах гомологичных хромосом, то пары признаков наследуются независимо друг от друга ( закон независимого наследования ).

Рассмотрим опыт Г. Менделя, который привел его к открытию закона независимого наследования. Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам - окраски семян (желтые и зеленые) и формы семян (гладкие и морщинистые). Доминантные признаки - желтая окраска (А) и гладкая форма семян (В). Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии этих гамет все потомство будет единообразным ( рис. 9 ).

При образовании гамет у гибрида (F1) из каждой пары аллельных генов в гамету попадет только один. При этом вследствие случайности расхождения отцовских и материнских хромосом в мейозе I аллель А может попасть в одну гамету с аллелем В или с аллелем b. Точно так же, как аллель а может объединиться в одной гамете с аллелем В или b ( рис. 10 ). Поскольку в каждом организме образуется много половых клеток, в силу статистических закономерностей у гибрида равновероятно образование четырех сортов гамет: АВ, Ab, aB, ab, в равных количествах. Во время оплодотворения каждая из четырех типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощьюрешетки Пеннета ( рис. 9 ). Над решеткой по горизонтали выписываются гаметы одного родителя, а по левому краю решетки по вертикали - гаметы другого родителя. В квадратики вписываются генотипы зигот, образующихся при слиянии гамет. Нетрудно подсчитать, что по фенотипу потомство делится на четыре группы в следующем отношении: 9 желтых гладких; 3 желтых морщинистых; 3 зеленых гладких; 1 зеленая морщинистая ( рис. 9 ). Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение числа гладких к числу морщинистых для каждой пары равно 3:1. Таким образом, в дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как в моногибридном скрещивании, т.е. независимо от другой пары признаков. Иначе можно сказать, что расщепление по каждой паре генов идет независимо от других пар генов. Однако в отличие от закона расщепления, который справедлив всегда, закон независимого наследования проявляется только в тех случаях, когда пары аллельных генов расположены в разных парах гомологичных хромосом.

Законы Г. Менделя статистичны, они подтверждаются только в опытах с достаточно большим материалом (подсчеты сотен и тысяч особей).

Закон независимого комбинирования, или третий закон Менделя. Изучение Менделем наследования од­ной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доми­нирования, неизменность рецессивных аллелей у гибри­дов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельнои пары. Одна­ко организмы различаются по многим генам. Устано­вить закономерности наследования двух пар альтерна­тивных признаков и более можно путем дигибридного или полигибридного скрещивания.

Для дигибрндного скрещивания Мендель взял гомо­зиготные растения гороха, отличающиеся по двум ге­нам — окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки — желтая окраска (А) и гладкая форма (В) семян. Каж­дое растение образует один сорт гамет по изучаемым аллелям:

При слиянии гамет все потомство будет единообразным

При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном Ь. Точно так же ген а может оказаться в одной гамете с геном В или с геном Ь. Поэтому у гибрида образуются четыре типа гамет:АВ, Ав, аВ, оа. Во время оплодотворения каждая из четырех типов гамет одного организма слу­чайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали — гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет .

Легко подсчитать, что по фенотипу потомство делит­ся на 4 группы: 9 желтых гладких, 3 желтых морщини­стых, 3 зеленых гладких, 1 желтая морщинистая. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещива­нии, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по прави­лам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают раз­личные комбинации генов.

Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том слу­чае, если пары аллельных генов расположены в разных парах гомологичных хромосом:

скрещивают особь с неизвестным генотипом и организм, гомозиготный по рецессивной аллели:

Теперь можно сформулировать третий закон Менде­ля: при скрещивании двух гомозиготных особей, отлича­ющихся друг от друга по

двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Законы Менделя служат основой для анализа рас­щепления в более сложных случаях: при различиях осо­бей по трем, четырем парам признаков и более.

Если родительские формы различаются по одной паре признаков, то во втором поколении наблюдается расщепление в отношении 3:1, для дигнбрндного скре­щивания это будет (3:1) г, для трнгибридного — (3:1) и т. д. Можно рассчитать также число типов гамет, об­разующихся у гибридов:

В случае гомознготности доминантной особи потом­ство от такого скрещивания будет единообразным « расщепление не произойдет. Иная картина получится, если доминантная форма гетерозиготна:

Расщепление потомства по фенотипу произойдет в отношении 1:1. Такое расщепление—прямое доказа­тельство образования у одного из родителей двух типов гамет, т. е. его гетерозиготности. При гетерозиготности организма по двум генам анализирующее скрещивание выглядит так:

У моногнбрнда  —~— образуются Два ™°а гамет, или 2

А      В У дигнбрида------- —*• — чегнре ran» гамет, иол 2

ABC

У грцгибрлла =   —^     восемь типов гамет, иди 2 а        в        с

Анализирующее скрещивание. Разработанный Мен­делем гибридологический метод изучения наследствен­ности позволяет установить, гомозиготен или гетерози­готен организм, имеющий доминантный фенотип поисследуемому гену (или исследуемым генам). Для этого

 В потомстве образуются четыре группы фенотипов в отношении 1:1:1:1.