logo search
Studentam_SGMU_KP_2012_Sovrem_konts_estest (2) / КСЕ Учебники / Гусейханов&Раджабов_Концепции современного естествознания_2007

10.4. Солнце, звезды и межзвездная среда

К дальним звездам, в небесную

роздымъ

улетали ракеты не раз.

Люди, люди — высокие звезды,

долететь бы мне только до вас.

Р. Гамзатов

Солнце — это наша звезда. Изучая Солнце, мы узнаем о многих явлениях и процессах, происходящих на других звездах и недоступных непосредственному наблюдению из-за огромных расстояний, которые отделяют нас от звезд. Радиус Солнца в 109 раз, а объем в 1,3 млн раз, масса в 333 000 раз больше соответственно радиуса, объема и массы Земли.

Энергия, получаемая Землей от Солнца, характеризуется солнечной постоянной. Солнечной постоянной называется величина, определяемая полной энергией, которая падает в 1 с на площадку в 1м2, расположенную перпендикулярно солнечным лучам вне земной атмосферы на среднем расстоянии Земли и Солнца. За последние 3 млрд лет она не изменилась и составляет 1360 Вт/м2. Значит, полная энергия, излучаемая Солнцем в единицу времени, постоянна. Эта энергия, называ-

253

емая светимостью (L0) Солнца, т. е. мощность его излучения, составляет L0 = 4 • 1026 Вт.

Существуют различные способы определения температуры Солнца, все они основаны на физических законах, открытых на Земле и действующих во всей доступной наблюдателям части Вселенной. Эти методы дают величину температуры поверхности Солнца 6000 К. При температуре 6000 К вещество находится на Солнце в газообразном состоянии, причем атомы некоторых химических элементов ионизированы. С глубиной температура растет, а вместе с тем увеличивается число ионизированных атомов. Поэтому основное состояние, в котором находится вещество на Солнце, — это плазма, а Солнце — это раскаленный плазменный шар.

Отождествление линий в спектре Солнца с линиями в спектрах химических элементов, изучаемых в лабораторных условиях, позволяет определить состав атмосферы Солнца. На Солнце обнаружено более 70 химических элементов. Никаких "неземных" элементов Солнце не содержит. Самые распространенные элементы на Солнце — водород (около 70% всей массы Солнца) и гелий (более 28%). Гелий ("солнечный газ") был впервые открыт на Солнце и только почти через 30 лет — на Земле.

Источником энергии Солнца является термоядерный синтез ядер водорода с образованием ядер гелия. Это происходит в ядре Солнца, составляющем четверть его радиуса. Температура в центре Солнца 14 млн К. Перенос энергии, выделяющей при ежесекундном сгорании в ядре Солнца 600 млн т водорода, происходит в зоне лучистого переноса энергии, а затем конвективной зоне. Солнце излучает электромагнитное излучение во всем диапазоне длин волн от -лучей до радиоволн, максимум видимого излучения которой находится на длине волны 5000А°. Видимое излучение Солнца образуется в самом нижнем слое атмосферы Солнца — фотосфере. Атмосфера состоит также из хромосферы и короны. Кроме излучения от Солнца распространяется поток частиц — протонов, нейтронов, электронов, называемых солнечным ветром. На расстоянии Земли их скорость составляет 400 км/с. Когда Солнце спокойное, солнечный ветер стабильный, но

254

во время солнечной активности их поток усиливается. Солнечная активность на Солнце проявляется в виде пятен, факелов, вспышек, протуберанцев и других явлений. Она проявляется периодически в среднем через 11 лет. Солнечная активность влияет на земные процессы.

Звезды — это массивные горячие газовые шары. В них сосредоточено более 95% всего вещества, наблюдаемого в природе. Изучая, как распределены в пространстве звезды и их скопления, ученые исследуют тем самым строение окружающего нас мира, структуру Вселенной. Звезды различаются большим разнообразием размеров, масс, светимостей, цветом, температурой. По массам есть звезды, превосходящие Солнце в 80 раз, но есть и составляющие 0,05 массы Солнца. По светимостям звезды имеют в 100 000 раз большую и столько же раз меньшую светимость. Диапазон поверхностных температур звезд охватывает от 3000 К до 50 000 К. Цвет звезды зависит от температуры. При 3000 К звезда красная, при 6000 К — желтая, при 10 000 белая, при больших — голубая. Время существования звезд зависит от массы. Массивные звезды существуют меньше, чем легкие. Диапазон времен существования звезд составляет от 100 млн до сотен миллиардов лет. В звездах произошло и происходит образование большинства химических элементов, из которых состоит вещество окружающего нас мира. Атомы любого вещества на Земле, включая и те, из которых состоим мы сами, когда-то, еще до того как возникла Солнечная система, родились или пребывали в недрах звезд.

Получение спектров звезд и их сравнение со спектрами лабораторных газовых источников сразу же позволили сделать вывод о том, что звезды состоят из известных на Земле химических элементов. В Солнце и звездах были найдены практически все элементы периодической системы элементов Менделеева, кроме неустойчивых изотопов и самых тяжелых атомов. У большинства звезд около 98% массы приходится на водород и гелий — самые легкие элементы, причем по массе водорода примерно в 2,5 раза больше, чем гелия. На долю всех остальных тяжелых элементов приходится менее 2% массы.

255

Хотя звезды состоят из знакомых нам химических элементов, звездный газ обладает двумя важными особенностями. Во-первых, если в обычных, "земных" условиях газ состоит из молекул, то в звездах из-за высокой температуры молекулы распадаются (диссоциируют) на отдельные атомы, так что звездный газ атомарный. Лишь во внешних слоях наиболее холодных звезд, где температура не превышает 4000 К, имеются наиболее устойчивые радикалы или молекулы, например CN, СН3, ОН, TiO. Во-вторых, основная масса звездного газа ионизирована. Это также вызвано высокой температурой газа.

Так как звезды заметно не меняют своих размеров, можно считать, что их вещество находится в равновесии: газовое давление внутри звезды само устанавливается как раз таким, чтобы удержать звезду от гравитационного сжатия. Это равновесие устойчиво, в противном случае ни звезд, ни Солнца в природе не существовало бы.

Температура и плотность газа внутри звезд быстро возрастает вглубь. Так, в центре Солнца температура составляет около 14 млн градусов, а плотность газа примерно в 150 раз больше, чем у воды. По существующим оценкам, большинство звезд может светить, не переставая, многие миллиарды лет. Наше Солнце излучает свет уже около 5 млрд лет. Это в несколько раз больше возраста самых древних ископаемых растений.

Откуда звезды черпают излучаемую ими энергию? Основным источником энергии звезд считаются взаимодействие между атомными ядрами. Известно, что при термоядерных реакциях происходит слияние (синтез) легких ядер атомов с образованием более тяжелых ядер других атомов. В недрах звезд происходит взаимодействие между ядрами водорода — протонами. При температуре 10-30 млн градусов, существующей в центральных областях большинства звезд, средняя скорость движения протонов составляет несколько сотен километров в секунду. Наиболее энергичные протоны, сталкиваясь, взаимодействуют между собой довольно сложным образом. В результате этого взаимодействия четыре протона могут образовать одно ядро атома гелия. Такая реакция сопровождается выделением энергии. Это

256

поддерживает высокую температуру в недрах звезды. Получается, что звезды как бы "подогреваются" из центра. Реакцию превращения водорода в гелий можно представить так:

Так как масса четырех протонов больше массы ядра атома гелия, то этот избыток массы и уносится квантами излучения и нейтрино по соотношению Эйнштейна Е = mc2 = hv. Звезды типа Солнца каждую секунду теряют на излучение массу в миллионы тонн. При этом сотни миллионов тонн водорода ежесекундно превращаются в гелий. У звезд, температура которых в центре существенно выше, чем у Солнца, может происходить синтез более тяжелых элементов из гелия. Эти реакции также сопровождаются выделением энергии, способной поддерживать излучение звезд. Так, в красных гигантах и сверхгигантах, в недрах которых температура превышает сотни миллионов градусов, могут идти реакции слияния ядер гелия, приводящие к образованию ядер углерода и кислорода (из трех и четырех ядер гелия соответственно).

Большая часть углерода и кислорода, существующих в природе, возникла в недрах таких звезд. В звездах путем слияния атомных ядер возникают новые химические элементы, которых, таким образом, в природе становится все больше и больше. Химические элементы, составляющие нашу Землю и все, что на ней существует, в большинстве своем также сформировались в недрах звезд миллиарды лет назад, когда еще не существовало ни Земли, ни Солнца.

Согласно современным представлениям, звезды образуются путем конденсации весьма разряженной межзвездной газопылевой среды. Плотность межзвездной газовой среды ничтожна. Химический состав межзвездного газа довольно хорошо исследован. Он сходен с химическим составом наружных слоев

257

звезд. Преобладают атомы водорода и гелия, атомов металлов сравнительно немного. В довольно заметных количествах присутствуют простейшие молекулярные соединения (например, СО, CN). Возможно, что значительная часть межзвездного газа находится в форме молекулярного водорода. Кроме газа в состав межзвездной среды входит космическая пыль. Размеры таких пылинок составляют 10-4 -10-5 см. Они являются причиной поглощения света в межзвездном пространстве. Космическая пыль, так же как и связанный с ней межзвездный газ, сильно концентрируется к галактической плоскости. Толщина газопылевого слоя составляет всего лишь около 250 пк. Межзвездный газ и пыль смешаны. Для этой среды характерно резко выраженное "клочковатое" распределение. Она существует в виде облаков (в которых плотность раз в 10 больше средней), разделенных областями, где плотность ничтожно мала. Эти газопылевые облака сосредоточены в преимущественно в спиральных ветвях Галактики и участвуют в галактическом вращении. Наиболее плотные из таких облаков наблюдаются как темные или светлые туманности.

В отдельных областях межзвездного пространства газ находится преимущественно в молекулярном состоянии. За последние 30 лет, истекшие после открытия в межзвездной среде радиолинии ОН и Н20 было открыто много других радиолиний межзвездного происхождения, принадлежащих различным молекулам. Полное число обнаруженных таким образом молекул уже превышает 50. Среди них особенно большое значение имеет молекула СО, радиолиния которой наблюдается почти во всех областях межзвездной среды. Довольно неожиданным было обнаружение в таких облаках радиолиний весьма сложных многоатомных молекул, например СН3СОН, CH3CN и др. Это открытие, возможно, имеет отношение к проблеме происхождения жизни во Вселенной.

Сравнительно недавно астрономы получили ряд косвенных доказательств наличия межзвездных магнитных полей, связанных с облаками межзвездного газа и движущихся вместе с ними. Межзвездные магнитные поля играют решающую роль

258

при образовании плотных газопылевых облаков межзвездной среды, из которых конденсируются звезды. Масса межзвездного газа в нашей Галактике близка к миллиарду солнечных масс, что составляет немногим больше 1% от полной массы Галактики, обусловленной в основном звездами. В других звездных системах относительное содержание межзвездного газа меняется в довольно широких пределах. У эллиптических галактик оно очень мало, около 10-4 и даже меньше, в то время как у неправильных звездных систем (типа Магеллановых Облаков) содержание межзвездного газа доходит до 20 и даже 50%. Это обстоятельство тесно связано с вопросом об эволюции звездных систем.