logo search
Studentam_SGMU_KP_2012_Sovrem_konts_estest (2) / КСЕ Учебники / Гусейханов&Раджабов_Концепции современного естествознания_2007

19.3. Методы математического моделирования

Тот, кто хочет решать вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым, не является.

Г. Галилей

Выявление общего, существенного, присущего всем системам определенного рода производится наиболее общим приемом —

481

математическим моделированием. При математическом моделировании систем наиболее ярко проявляется эффективность единства качественных и количественных методов исследования, характеризующая магистральный путь развития современного научного познания.

Всякая сложная система, модель которой мы создаем, при своем функционировании подчиняется определенным законам — физическим, химическим, биологическим и др. Рассматриваются такие системы, для которых знание законов предполагает известные количественные соотношения, связывающие те или иные характеристики моделируемой системы. Модель создается для ответа на множество вопросов о моделируемом объекте. Интересуясь некоторыми аспектами функционирующей системы, изучают ее с определенных точек зрения. Направления изучения системы в значительной степени и определяет выбор модели. Опишем процесс построения математической модели сложной системы. Его можно представить состоящим из следующих этапов:

  1. Формулируются основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели.

  2. Из множества законов, управляющих поведением системы, учитываются те, влияние которых существенно при поиске ответов на поставленные вопросы.

  3. В дополнение к этим законам, если необходимо, для системы в целом или отдельных ее частей формулируются определенные гипотезы о функционировании. Как правило, эти гипотезы правдоподобны в том смысле, что могут быть приведены некоторые теоретические доводы в пользу их принятия.

  4. Гипотезы, так же как и законы, выражаются в форме определенных математических соотношений, которые объединяются в некоторое формальное описание модели.

На этом заканчивается процесс построения математической модели. Дальше следует процесс исследования этих соотношений с помощью аналитических и вычислительных методов, приводящий в конечном итоге к отысканию ответов на предъявляемые модели вопросы. Разрабатывается или используется созданный

482

ранее алгоритм для анализа этой модели. Если модель и алгоритм не слишком сложны, то может оказаться возможным аналитическое исследование модели. В противном случае составляется программа, реализующая этот алгоритм на ЭВМ. После выполнения расчетов по модели на ЭВМ их результаты обязательно сравниваются с фактической информацией из соответствующей предметной области. Это сравнение необходимо для того, чтобы убедиться в адекватности модели, в том, что модельным расчетам можно верить, их можно использовать.

Если модель хороша, то ответы, найденные с ее помощью, как правило, бывают весьма близки к ответам на те же вопросы о моделируемой системе. Более того, в этом случае зачастую с помощью модели удается ответить и На некоторые ранее не ставившиеся вопросы, расширить круг представлений о реальной системе. Если же модель плоха, т. е. недостаточно адекватно описывает систему с точки зрения задаваемых ей вопросов, то она подлежит дальнейшему улучшению или замене. Возможны также ошибки в алгоритме, в программе для ЭВМ. Такие повторные просмотры продолжаются до тех пор, пока результаты расчетов не удовлетворят исследователя. Теперь модель готова к использованию. Критерием адекватности модели служит практика, которая и определяет, когда может закончиться процесс улучшения модели. Итак, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную исходную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человечества.

Достоинствами метода математического моделирования является то, что модель представляет собой формализованную запись тех или иных законов природы, управляющих функционированием системы. Однако определенные трудности возникают при попытке построения математической модели очень сложной системы.

Существуют различные модели, используемые для описания сложных систем, такие как:

483

В качестве примера рассмотрим применение математического моделирования в экологии.