Энтропия
Существуют общие приемы расчета изменений энтропии при различных процессах, связанных с нагревом, охлаждением, плавлением, испарением, химическими реакциями и т.д. Эти приемы, рецепты расчетов составляют неотъемлемую часть термодинамики, и все они основаны на использовании тех или иных опытных данных.
Австрийский физик Л. Больцман дал физическую интерпретацию энтропии и причину ее роста в изолированных системах (так называют системы, имеющие постоянную энергию). Согласно Больцману, энтропия – мера беспорядка в системе. Полный порядок соответствует минимуму энтропии. Любой беспорядок увеличивает ее. Таким образом, физический смысл возрастания энтропии следующий: будучи предоставленным самому себе, не испытывая внешних воздействий (изолированная система), коллектив частиц стремится перейти в состояние, в котором при данных условиях возможен большой беспорядок. Максимальная энтропия соответствует полному хаосу.
Где больше порядка в расположении атомов – в кристаллическом твердом теле, где атомы занимают определенные положения (узлы) в кристаллической решетке, или в жидкости, где определенных, закрепленных за ними положений у атомов нет? Ответ ясен: в твердом теле. Поскольку энтропия – мера беспорядка, то в жидкости она больше, чем в кристалле. Энтропия воды больше энтропии льда. Сравним теперь состояние частиц в водяном паре и в воде. Положения молекул не фиксированы и там, и там. Но при комнатной температуре и атмосферном давлении 1 моль воды (18 г) занимает объем 18 см3 (плотность воды составляет 1 г/см3), а 1 моль водяного пара – 22,4 л, т.е. почти в 1000 раз больше. Где возможен больший беспорядок? Конечно, в паре. И действительно, энтропия пара больше, чем энтропия воды, причем ее изменение при испарении больше, чем при плавлении, почти в 5 раз.
Критерий максимума энтропии справедлив только для изолированных тел. Если тело обменивается теплом с окружающей средой, то, согласно Д.У. Гиббсу, устойчивому состоянию соответствуют наименьшие значения других термодинамических функций. Именно поэтому ниже температуры плавления устойчиво твердое состояние, между температурами плавления и кипения – жидкое и т.д.
Для того чтобы вычислить изменение энтропии, достаточно знать отношения вероятностей или относительные вероятности.
Энтропия тела может уменьшаться. Такое уменьшение не противоречит второму закону термодинамики, поскольку он применим лишь к замкнутым системам: при совместном рассмотрении всех частей системы полное изменение энтропии либо равно нулю, либо положительно. Деятельность человека на Земле приводит к локальному уменьшению энтропии. Холодильники и тепловые насосы способны перекачивать тепло от холодного тела к горячему. Человек может вручную или с помощью машины отделить хорошие орехи от плохих. Жизнь как биологическое явление характеризуется процессами, уменьшающими локальную энтропию. Всюду, где наблюдается локальное возрастание упорядоченности, противостоящее беспорядку, происходит локальное убывание энтропии. Однако полная система, включающая в себя первоисточник энергии – Солнце, характеризуется возрастанием суммарной энтропии.
- Методические рекомендации
- Вводная лекция 1. Иерархия и взаимосвязь естественных наук
- Структура физики
- Наука нового времени
- Контрольные вопросы
- Лекция 2. Структурные уровни, организации материи Происхождение и роль симметрии в природе
- Симметрия и законы сохранения
- Действие фундаментальных физических законов на разных уровнях структурной организации материи, их инвариантность и качественное своеобразие для каждого уровня
- Значение инвариантности как фундамента естествознания. Спонтанное нарушение симметрии
- Лекция 3. Макромир: динамические закономерности (Механика) Основные понятия механики
- Три закона Кеплера и гармония мира
- Развитие классической механики
- Динамические закономерности. Особенности детерминистской картины мира
- Детерминизм и науки об обществе (Становление науки об обществе)
- Лекция 4. Макромир: статистические закономерности
- Термодинамика
- Энтропия
- Обращение времени
- Статистическая физика и термодинамика
- «Тепловая смерть» Вселенной
- Необратимость и механика
- Объяснение необратимости сложных динамических систем
- Статистические закономерности
- Статистические закономерности в общественных науках
- Контрольные вопросы
- Лекция 5. Дискретное и непрерывное Часть и целое
- Структура
- Атомистика и холизм
- Поля и частицы
- Электродинамика
- Электромагнитные волны
- Возникновение и развитие теории электромагнитного поля
- О принципе дополнительности
- Квантовая механика и естественные науки
- Квантовая механика и общественные науки
- Контрольные вопросы
- Лекция 7. Периодическая система химических элементов
- Контрольные вопросы
- Лекция 8. Мегамир: концепции теории относительности Пространство-время
- Теория относительности
- Пространство-время и причинность
- Релятивистская механика
- Расширение Вселенной и шкала космических расстояний
- Космологические парадоксы
- Релятивизм и общественные науки
- Контрольные вопросы
- Лекция 9. Современная астрофизика Космология
- Мир галактик
- Нестационарность Вселенной
- Реликтовое радиоизлучение
- Химический состав вещества и возраст Метагалактики
- Релятивистская теория тяготения и космологические решения Фридмана
- Образование галактик
- Очень ранняя Вселенная
- Элементарные частицы и космология
- Чёрная дыра
- Модели объединения и большой взрыв
- Лекция 10. Значение физики как целостного фундамента естествознания Квазичастичный метод
- Метод объектов – носителей свойств
- Физика как теоретическая основа естествознания
- Биология
- Контрольные вопросы
- Лекция 11. Человек и природа Биологическая химия (процессы происходящие в организме человека)
- Особенности биологического уровня организации материи
- Принципы эволюции и воспроизводства живых систем
- Экология и здоровье
- Биосфера и ноосфера
- Синергетика
- Особенность объектов общественных наук с точки зрения математики
- Контрольные вопросы по дисциплине «концепции современного естествознания»
- Тестирующая система по дисциплине «концепции современного естествознания»
- Литература:
- 1.Основная
- 2.Дополнительная