Голография
Голография - метод записи и восстановления изображения, основанный на интерференции и дифракции волн.
Световой поток может нести определенную информацию. Простейшим примером записи (кодирования) информации, имеющейся в световом потоке является фотография.
Рассматривание фотографии есть процесс декодирования, восстановления сведений об исходном сфотографированном объекте. Однако эти сведения (информация) об объекте значительно беднее тех, которые мы получаем прямым путём, рассматривая оригинал. Мы теряем цвет (в черно-белой фотографии) и объёмность. Это происходит потому, что для записи информации в фотографии используется только одно свойство волны - её амплитуда, различная для разных точек фотографического изображения.
Для записи информации об объекте уже давно пользуются и другим свойством волны - её фазой . Этот вид информации широко применяется в интерференции , например для определения углового расстояния между двумя близко расположенными звездами, показателя преломления вещества, для изучения структуры спектров различных веществ и др.
Имеется еще и третий способ записи сведений об объекте. Он основан на разложении света в спектр. Иногда говорят, что спектрограмма - это паспорт исследуемого вещества.
А нельзя ли получить более богатые сведения об оригинале, использовав хотя бы два параметра световой волны? Английский физик Д.Габор в 1947 году предложил изменить для записи информации одновременно амплитуды и фазы волны. К сожалению, в то время его идея не была реализована на практике, так как отсутствовали хорошие когерентные источники света, необходимые для получения голограмм.
Первые голограммы удалось записать в 1962 году советскому ученому Ю.Н.Денисюку. Через год для этой цели американские ученые Э.Лейт и Ю.Упатыниекс использовали лазер. С тех пор голография бурно развивается.
После проявления пластинки на ней видна какая-то “муть” - странные полосы, хаотически расположенные линии. В действительности это интерференционная картина, в которой закодированы свойства луча 6 (и тем самым предмета 5). При этом зарегистрировано пространственное распределение амплитуд и фаз световых волн.
Проявленная пластинка 7 и называется голограммой. Если теперь убрать предмет 5 и наблюдать (глазом) сквозь голограмму в направлении 8, то в том же месте где был предмет 5, мы увидим его восстановленное изображение. Изображение объёмно, на него можно посмотреть и справа, и слева.
Крупный шаг в развитии голографии был сделан Ю.Н.Денисюком. Он предложил создать голограммы, в которых, кроме распределения амплитуд и фаз, было бы зарегистрировано распределение длин волн. Сделать это оказалось возможным путём использования толстых фотографических слоёв. В результате для каждой длины записывается своя одноцветная голограмма. При восстановлении голограммы с помощью источника белого света получается цветное объёмное изображение.
Любая, даже малая, часть голограммы содержит полную информацию об объекте. Объясняется это тем, что в любую точку голограммы попадает свет от всех точек объекта. Поэтому, если голограмму расколоть на части, то каждая из них позволит получить представление обо всём объекте. Правда с уменьшением размеров куска голограммы качество изображения ухудшается.
Наряду с оптической голографией все большее расположение получают голографические методы, использующие неэлектромагнитные волны. Например, акустическая голография.
Для создания голограммы используются два когерентных пучка акустических волн (один - опорный, другой - предметный), которые складываются на границе раздела двух сред (вода - воздух). Получаемая фазовая акустическая голограмма фотографируется обычным способом.
Особенно многообещающи ультразвуковые акустические голограммы, так как они позволяют получить высококачественные изображения человеческого тела, показывающие структуру мягких тканей, органов и сосудов, то есть дают врачу новую клиническую информацию.
- Взаимодействие ионизирующего излучения с веществом
- Величина лпэ в кэВ/мкм зависит от плотности вещества.
- Относительная биологическая эффективность различных видов излучений
- Физико-химические основы биологического действия ионизирующего излучения. Защита от ионизирующих излучений
- Ионизационные потери
- Тормозное и черенковское излучения
- Прямое и косвенное действие излучений на мишени в клетках
- Первичные продукты радиолиза воды и их взаимодействие с биомолекулами
- Дифференциальное уравнение гармонического колебания.
- Уравнение для смещения, скорости и ускорения колеблющейся точки.
- Энергия при гармоническом колебании.
- Таким образом, полная энергия гармонического колебания оказывается постоянной в отсутствие сил трения. Сложение гармонических колебаний, направленных по одной прямой.
- Сложное колебание и его гармонический спектр.
- Сложение взаимно-перпендикулярных колебаний.
- Затухающие колебания.
- Уравнение волны.
- Эффект доплера.
- Акустика.
- Природа звука.
- Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- Физические основы звуковых методов исследования в клинике.
- Голография
- Дифракция света. Дифракция на щели в параллельных лучах.
- Дифракция решётки. Дифракционный спектр.
- Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы. Связь мощности дозы и активности. Дозиметрические приборы.
- Внесистемная – рад
- Детекторы ионизирующего излучения. Ионизационные камеры.
- Газоразрядные счетчики. Фотографические сцинтилляционные,
- Полупроводниковые и черенковские детекторы.
- Авторадиография.
- Импульсный сигнал и его параметры.
- Генераторы импульсных (релаксационных) электрических колебаний. Мультивибратор. Блокинг-генератор.
- Дифференцирующая и интегрирующая цепи: принципиальная схема, зависимость формы выходного импульса от длительности входного и постоянной времени цепи.
- Физиотерапевтические аппараты низкочастотной терапии. Электронные стимуляторы для физиологических исследований и для лечебных целей. Типы и устройство кардиостимуляторов.
- Дефибрилляторы.
- Магнитные моменты электрона, атома и молекулы.
- Магнитные свойства вещества.
- Аппарат терапии переменным магнитным полем.
- Физические основы магнитокардиографии.
- Мембранные потенциалы и их ионная природа.
- Диффузия. Пассивный перенос неэлектолитов через биомембраны, уравнение Рика. Транспорт неэлектролитов через мембраны путем простой и облегченной (в комплексе с переносчиком) диффузии.
- Механические свойства биологических тканей.
- Вязкоупругие, упруговязкие и вязкопластичные
- Системы. Механические свойства мышц, костей,
- Кровеносных сосудов, лёгких
- Задачи, объекты и методы биомеханики.
- Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза.
- Эргометрия. Механические свойства тканей организма.
- Микроскоп. Формула для увеличения.
- Разрешающая способность. Значение апертурного угла. Формула для предела разрешения.
- Ультрафиолетовый микроскоп.
- Иммерсионные системы.
- Полезное увеличение.
- Специальные приемы микроскопии:
- Основные характеристики ядер атомов.
- Радиоактивность. Основной закон радиоактивного распада. Активность.
- Ядерные реакции. Методы получения радионуклидов.
- Пассивный и активный транспорт веществ
- Лиганд - малая молекула (ион, гормон, лекарственный препарат и др.). Второй этап работы фермента - гидролиз атф. При этом происходит образование энзим - фосфатного комплекса (е-р).
- Перенос кальция из области меньшей (1-4 х 10-3 м) в область больших концентраций (1-10 х 10-3 м) - это и есть та работа, которую совершает Са - транспортная атФаза в мышечных клетках.
- Проницаемость.
- Поляризация света.
- Поляризация при двойном лучепреломлении. Поляризационные устройства.
- Вращение плоскости поляризации (оптическая активность).
- Дисперсия оптической активности. Использование поляризованного
- Света в медико-биологических исследованиях: поляриметрия
- (Сахариметрия), спектрополяриметрия, поляризационный микроскоп.
- Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- Первичное действие постоянного тока на ткани организма.
- Гальванизация.
- Лечебный электрофорез.
- Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- Первичное действие постоянного тока на ткани организма.
- Гальванизация.
- Лечебный электрофорез.
- 1. Механические волны, их виды и скорость распространения.
- Уравнение волны.
- Акустика. Природа звука. Физические характеристики звука. Тоны и шумы.
- Физические характеристики звука. Тоны и шумы.
- Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- Понятие о звукопроводящей и звуковоспринимающей системах уха человека. Физика слуха.
- Поглощение и отражение звуковых волн. Реверберация.
- Физические основы звуковых методов исследования в клинике.
- 2. Механические колебания: гармонические, затухающие и вынужденные колебания.
- Дифференциальное уравнение гармонического колебания.
- Энергия при гармоническом колебании.
- Затухающие колебания.
- Вынужденные колебания. Резонанс.
- Автоколебания.
- Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных. Сложение гармонических колебаний, направленных по одной прямой.
- Сложное колебание и его гармонический спектр.
- Сложение взаимно-перпендикулярных колебаний.
- Ультразвук. Методы получения и регистрации.
- Источники и приемники акустических колебаний и ультразвука.
- Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук.
- Физические основы применения ультразвуковых волн в медицине Ультразвуковая диагностика. Хирургическое и терапевтическое применение ультразвука.
- Эффект Доплера и его применение для неинвазивного измерения скорости кровотока.
- Инфразвук, особенности его распространения. Физические основы действия инфразвука на биологические системы.
- Вибрации, их физические характеристики
- Ударные волны.
- Модель Вольтера
- Модель, представляющая сердечно-сосудистую систему как электрическую цепь. Чисто резистивная модель
- 1.1.2.5. Модели электрической активности сердца
- 1. Основные понятия гидродинамики. Условие неразрывности струи
- Уравнение Бернулли.
- Внутреннее трение (вязкость) жидкости. Формула Ньютона.
- Ньютоновские и неньютоновские жидкости.
- Методы определения вязкости жидкости.
- Реологические свойства крови, плазмы и сыворотки. Факторы, влияющие на вязкость крови в организме.
- Фотоэффект.