logo
Шпора

Дифференциальное уравнение гармонического колебания.

Рассмотрим простейшую колебательную систему: шарик массой m подвешен на пружине.

В этом случае упругая сила F1 уравновешивает силу тяжести mg. Если сместить шарик на расстояние х, то на него будет действовать большая упругая сила (F1 + F). Изменение упругой силы по закону Гука пропорционально изменению длины пружины или смещению шарика х:

F = - kx, (2.1)

где k — жесткость пружины. Знак "-" отражает то обстоятельство, что смещение и сила имеют противоположные направления.

Сила F обладает следующими свойствами: 1) она пропорциональна смещению шарика из положения равновесия; 2) она всегда направлена к положению равновесия.

В нашем примере сила по своей природе упругая. Может случиться, что сила иного происхождения обнаруживает такую же закономерность, то есть оказывается равной - kx. Силы такого вида, неупругие по природе, но аналогичные по свойствам силам, возникающим при малых деформациях упругих тел, называют квазиупругими.

Уравнение второго закона Ньютона для шарика имеет вид: , или.

Так как k и m — обе величины положительные, то их отношение можно приравнять квадрату некоторой величины 0, т.е. мы можем ввести обозначение . Тогда получим

Таким образом, движение шарика под действием силы вида (2.1) описывается линейным однородным дифференциальным уравнением второго порядка.

Легко убедиться подстановкой, что решение уравнения имеет вид:

(2.3) x = Acos(0 t + 0),

где (0 t + 0) = — фаза колебаний; 0 — начальная фаза при t = 0; 0 — круговая частота колебаний; A — их амплитуда.

Итак, смещение x изменяется со временем по закону косинуса.

Следовательно, движение системы, находящейся под действием силы вида f = - kx, представляет собой гармоническое колебание.

График гармонического колебания показан на рисунке. Период этих колебаний находится из формулы: . Для пружинного маятника получаем:. Круговая частота связана с обычной соотношением: .